Sains Malaysiana 48(2)(2019): 435–442
http://dx.doi.org/10.17576/jsm-2019-4802-22
Aggregation
and Stability of Iron Oxide and Alumina Nanoparticles: Influences of pH and Humic
Acid Concentration
(Pengagregatan
dan Kestabilan Oksida Besi dan Zarah Nano Alumina: Pengaruh pH dan
Kepekatan Asid Humik)
NUR SURAYA AHMAD1*, SHAHIDAN RADIMAN1 & WAN ZUHAIRI WAN YAACOB2
1School of Applied
Physics, Faculty of Science and Technology, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2School of
Environmental and Natural Sources Sciences, Faculty of Science and Technology, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 2 Mei 2018/Diterima: 19 Oktober 2018
ABSTRACT
The scenario of released nanoparticles from consumer products into
the environment especially natural waters has become a great concern nowadays.
Assessing their aggregation and stability under environmental conditions is
important in determining their fate and behavior in natural waters. The
aggregation behavior of selected nanoparticles (iron oxide and alumina) was
investigated at variable concentrations of humic acid (5, 10, 50 mg/L), and pH
variation in solution. Dynamic light scattering was used to measure their
z-average hydrodynamic diameter and zeta potential. Derjaguin-Landau-Verwey-Overbeak
(DLVO)
theory was used to explain the thermodynamic interactions between two
particles. Then, the stability was evaluated by assessing their aggregation.
The increasing of humic acid concentrations enhanced aggregation of iron oxide
and alumina nanoparticles, particularly at low pH levels. The maximum
aggregation was found in pH below the point of zero charge (PZC)
due to electrostatic destabilization and electrostatic stabilization that took
place at pH above the point of zero charge. Meanwhile, at pH point of zero
charge, nanoparticles were coated with negative humic acid charged. From this
study, properties of nanoparticles (size, surface charge, Hamaker constant) and
environmental condition (humic acid concentration, pH) have their specific
roles to control the fate and behavior of nanoparticles in environmental media.
Keywords: Aggregation; DLVO; nanoparticles; stability
ABSTRAK
Pada masa ini, peningkatan senario pelepasan zarah nano daripada
produk pengguna ke persekitaran terutamanya ke dalam air semula jadi amatlah
membimbangkan. Penilaian agregasi dan kestabilan zarah nano adalah penting
untuk menentukan keadaan dan tingkah lakunya di dalam kandungan air semula
jadi. Kajian mengenai tingkah laku agregasi zarah nano (oksida besi dan
alumina) pada pelbagai kepekatan asid humik (5,10,50 mg/L) dan pH yang
berlainan dijalankan. Penyerakan cahaya dinamik digunakan untuk mengukur purata
diameter hidrodinamik dan nilai keupayaan zeta. Teori
Derjaguin-Landau-Verwey-Overbeak (DLVO) digunakan untuk
menerangkan tindak balas termodinamik antara dua zarah. Kemudian, kestabilan
dinilai berdasarkan tingkah laku agregasi. Peningkatan kepekatan asid humik
telah menggalakkan/meningkatkan tingkah laku agregasi zarah nano oksida besi
dan alumina pada pH yang rendah. Agregasi maksimum dijumpai pada pH di bawah
caj titik sifar yang disebabkan oleh ketidakstabilan elektrostatik dan
kestabilan elektrostatik dilihat berlaku pada pH di atas pH caj titik sifar.
Manakala, pada caj titik sifar, zarah nano disaluti dengan caj asid humik yang
bersifat negatif. Keputusan daripada kajian ini mendapati sifat zarah nano
(saiz, caj permukaan, pemalar Hamaker) dan keadaan persekitaran (kepekatan asid
humik dan pH) memainkan peranan yang penting dalam mengawal keadaan dan tingkah
laku zarah nano pada medium sekitaran.
Kata kunci: Agregasi; DLVO;
kestabilan; zarah nano
RUJUKAN
Almusallam, A.A., Abdulraheem, Y.M., Shahat, M. & Korah,
P. 2012. Aggregation behavior of titanium dioxide nanoparticles in aqueous
environments. Journal of Dispersion Science and Technology 33: 728-738.
Baalousha, M. 2009. Aggregation and disaggregation of iron
oxide nanoparticles: Influence of particle concentration, pH and natural
organic matter. Science of the Total Environment 407: 2093-2101.
Barisit, M., Atalay, S., Beskok, A. & Qian, S. 2014.
Size dependent surface charge properties of silica nanoparticles. The
Journal of Physical Chemistry 118(4): 1836-1842.
Bhatt, I. & Triphati, B.N. 2011. Interaction of
engineered nanoparticles with various components of the environment and
possible strategies for their risk assessment. Chemosphere 82: 308-317.
Buffle, J., Wilkinson, K.J., Stoll, S., Fiella, M. &
Zhang, J.W. 1998. A generalized description of aquatic colloidal interaction:
The three-colloidal component approach. Environmental Science Technology 32:
2887-2899.
Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E.
& Shon, H.K. 2013a. Assessing the aggregation behaviour of iron oxide
nanoparticles under relevant environmental conditions using a multi-method
approach. Water Research 47: 4585-4599.
Chekli, L., Phuntsho, S., Roy, M. & Shon, H.K. 2013b.
Characterization of fe-oxide nanoparticles coated with humic acid and Suwannee
river natural organic matter. Science of the Total Environment 461-462:
19-27.
De Mesquita, L.M.S., Lins, F.F. & Torem, M.L. 2003.
Interaction of hydrophobic bacterium strain in a hematitenext term quartz
flotation system. International Journal of Mineral Processing 71(1-4):
31-44.
Dickson, D., Liu, G., Li, C., Tachiev, G. & Cai, Y.
2012. Dispersion and stability of bare hematite nanoparticles: Effect of
dispersion tools, nanoparticles concentration, humic acid and ionic strength. Science
of the Total Environment 419: 171-177.
Elimelech, M., Gregory, J., Jia, X. & Williams, R.A.
1995. Particle Deposition and Aggregation: Measurement, Modelling and
Simulation. Oxford: Butterworth-Heinemann.
Erhayem, M. & Sohn, M. 2014. Effect of humic acid source
on humic acid adsorption onto titanium dioxide nanoparticles. Science of the
Total Environment 470-471: 92-98.
Fritz, H.M. & Reinhanrd, N. 2010. Nanoparticles in
the Water Cycle: Properties, Analysis, and Environmental Relevance. New
York: Springer.
Ghosh, S., Hamid, M., Prasanta, B. & Xing, B.S. 2010.
Colloidal stability of Al2O3 nanoparticles as affected by coating of
structurally different humic acids. Langmuir 26(2): 873-879.
Gottschalk, F., Sun, T. & Nowack, B. 2013. Environmental
concentrations of engineered nanomaterials: Review of modeling and analytical
studies. Environmental Pollution 181: 287-300.
Gottschalk, F. & Nowack, B. 2011. The release of
engineered nanomaterials to the environment. Journal of Environmental
Monitoring 13: 1145-1155.
Hoecke, V.K., De Schamphelaere, K.A., Van Der Meeren, P.,
Smagghe, G. & Janssen, C.R. 2011. Aggregation and ecotoxicity of CeO
nanoparticles in synthetic and natural waters with variable pH, organic matter
concentration and ionic strength. Environmental Pollution 159: 970-976.
Hotze, E.M. & Lowry, G.V. 2010. Nanoparticle
aggregation: Challenges to understanding transport and reactivity in the
environment. Journal of Environmental Quality 39: 1909- 1924.
Hu, J-D., Zevi, Y., Kou, X-M., Xiao, J., Wang, X-J. &
Jin, Y. 2010. Effect of dissolved organic matter on the stability of magnetite
nanoparticles under different pH and ionic strength conditions. Science of
the Total Environment 408: 3477-3489.
Illes, E. & Tombacz, E. 2006. The effect of humic acid
adsorption on pH-dependent surface charging and aggregation of magnetite
nanoparticles. Journal of Colloid and Interface Science 295: 115-123.
Keller, A.A., McFerran, S., Lazareva, A. & Suh, S. 2013.
Global life cycle releases of engineered nanomaterials. Journal of
Nanoparticles Research 15: 1-17.
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes,
T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin. & Lead, J.R. 2008. Environmental Toxicology and Chemistry 27(9): 1825-1851.
Kobayashi, M., Juillerat, F., Galletto, P., Bowen, P. &
Borkovec, M. 2005. Aggregation and charging of colloidal silica particles:
Effect of particle size. Langmuir 21: 5761-5769.
Labille, J. & Brant, J. 2010. Stability of nanoparticles
in water. Nanomedicine 5(6): 985-998.
Lead, J.R. & Wilkinson, K.J. 2006. Aquatic colloids and
nanoparticles: Current knowledge and future trends. Environmental Chemistry 3:
159-171.
Loosli,
F., Coustumer, P.L. & Stoll, S. 2013. TiO2 Nanoparticles aggregation and
disaggregation in presence of alginate and Suwannee river humic acids, pH and
concentration effects on nanoparticle stability. Water Research 47:
6052-6063.
Maurer-Jones,
M.A., Gunsolus, I.L., Murphy, C.J. & Haynes, C.L. 2013. Toxicity of
engineered nanoparticles in the environment. Analytical Chemistry 85(6):
3036-3049.
Medout-Marere,
V. 2000. A simple experimental way of measuring the Hamaker constant A11 of divided
solids by immersion calometry in apolar liquids. Journal Colloid of
Interface Science 228(2): 434-437.
Nam,
Y. & Lead, J.R. 2008. Manufactured nanoparticles: An overview of their
chemistry, interactions and potential environmental implications. Science of
the Total Environment 400: 396-414.
Omar,
F.M., Aziz, H.A. & Stoll, S. 2014a. Aggregation and disaggregation of ZnO
nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Science
of the Total Environment 468-469: 195-201.
Omar,
F.M., Aziz, H.A. & Stoll, S. 2014b. Nanoparticle properties, behavior, fate
in aquatic systems and characterization methods. Journal of Colloid Science
and Biotechnology 3: 1-30.
Peters,
R., Kramer, E., Agnes, G.O., Rivera, Z.E.H., Oegema, G., Tromp, P.C., Fokkink,
R., Rietveld, A., Marvin, H.J.P., Weigel, S., Peijnenburg, A.A.C.M. &
Bouwmeester, H. 2012. Presence of nano-sized silica during in vitro digestions
of food containing silica as a food additive. ACS Nano 6(3): 2441-2451.
Philippe,
A. & Schaumann, G.E. 2014. Interactions of dissolved organic matter with
natural and engineered inorganic colloids: A review. Environmental Science
& Technology 48(16): 8946-8962.
Romanello,
M.B. & Fidalgo De Cortalezzi, M.M. 2013. An experimental study on the aggregation
nanoparticles under environmentally relevant conditions. Water Research 47:
3887-3898.
Therezein,
M., Thill, A. & Wiesner, M.R. 2014. Importance of heterogeneous aggregation
for NP fate in natural and engineered systems. Science of the Total Environment 485- 486: 309-318.
Tombacz,
E., Dobos, A., Szekeres, M., Narres, H.D., Klumpp, E. & Dekany, I. 2000.
Effect of pH and ionic strength on the interaction of humic acid with aluminium
oxide. Colloid Polymer Science 278: 337-345.
Wagner,
S., Gondikas, A., Neubauer, E., Hofmann, T. & Von Der Kammer, F. 2014. Spot
the difference: Engineered and natural nanoparticles in the
environment-release, behavior and fate. Angewandte Chemie-International
Edition 53(46): 12398-12419.
Yang,
K., Lin, D. & Xing, B. 2009. Interactions of humic acid with nanosized
inorganic oxides. Langmuir 25: 3571-3576.
Zhang,
W-X. 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5: 323-332.
Zhang,
Y., Chen, Y., Westerhoff, P., Hristovski, K. & Crittenden, J.C. 2008.
Stability of commercial metal oxide nanoparticles in water. Water Research 42:
2204-2212.
*Pengarang
untuk surat-menyurat; email: nursuraya_ahmad@siswa.ukm.edu.my
|