Sains Malaysiana 48(7)(2019): 1447–1457

http://dx.doi.org/10.17576/jsm-2019-4807-14

 

Chemical Surface Analysis on Post-Thermal Treatment of the K-OMS-2 Catalysts and Catalytic Oxidation Efficiency at Low Temperature

(Analisis Permukaan Kimia Rawatan Pasca Haba pada Mangkin K-OMS-2 dan Kecekapan Pemangkinan Pengoksidaan pada Suhu Rendah)

 

CHATKAMOL KAEWBUDDEE1,2, PINIT KIDKHUNTHOD3, NARONG CHANLEK3, RATTABAL KHUNPHONOI2,4,5 & KITIROTE WANTALA1,2,5,6*

 

1Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

2Chemical Kinetics and Applied Catalysis Laboratory (CKCL), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

3Synchrotron Light Research Institute Public Organization, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand

 

4Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

5Research Center for Environmental and Hazardous Substance Management (EHSM), Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

6Research Program on Development of Appropriate Technologies for Coloring Agent Removal from, Textile Dyeing, Pulp & Paper, Sugar Industries for Sustainable Management, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand

 

Diserahkan: 18 Disember 2018/Diterima: 24 April 2019

 

ABSTRACT

The effect of calcination temperature on the physical and chemical properties of cryptomelane (K-OMS-2) was investigated. The K-OMS-2 was synthesized via a hydrothermal method and calcined at 200-600ºC. The catalytic activities of the K-OMS-2 samples were tested in packed bed reactor (PBR) on toluene oxidation. The physical and chemical properties were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), specific surface area computed by Brunauer-Emmett-Teller (BET) equation, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) techniques. The increasing of the calcination temperature from 200-600ºC led to transform the phases from MnO2 to Mn2O3. The morphology of K-OMS-2 which observed in a nest-like type could promote the catalytic activity. With increasing the calcination temperature, the amount of Oads/Olatt molar ratio slightly increased whereas OH vibrations analyzed by FTIR insignificantly increased. The comparison of interaction effect indicated that the Oads/Olatt molar ratio played an important role in the oxidation performance more than the Mn3+/Mn4+ molar ratio.

 

Keywords: Oxidation state; thermal catalysis; toluene oxidation; VOCs removal; XPS

 

ABSTRAK

Kesan suhu pengkalsinan pada sifat fizikal dan kimia (K-OMS-2) kriptomelan telah dikaji. K-OMS-2 telah disintesis melalui kaedah hidroterma dan dikalsin pada suhu 200-600ºC. Aktiviti sampel pemangkin K-OMS-2 diuji dalam reaktor lapisan terpadat (PBR) pada pengoksidaan toluena. Sifat fizikal dan kimia telah dicirikan oleh teknik sinar-x difraktometer (XRD), mikroskop elektron imbasan (SEM), kawasan permukaan tertentu yang dihitung melalui persamaan Brunauer-Emmett-Teller (BET), spektroskopi transformasi Fourier inframerah (FTIR), spektroskopi fotoelektron sinar-x (XPS) dan ujian penyerapan sinar- x berhampiran pinggir struktur (XANES). Peningkatan suhu pengkalsinan daripada 200-600ºC membawa kepada perubahan daripada MnO2 kepada Mn2O3. Morfologi K-OMS-2 yang diperhatikan seperti jenis sarang dapat menggalakkan aktiviti pemangkinan. Dengan pertambahan suhu pengkalsinan, jumlah nisbah molar Oads/Olatt sedikit meningkat manakala getaran OH dianalisis FTIR meningkat secara tidak bererti. Perbandingan kesan interaksi menunjukkan bahawa nisbah molar Oads/Olatt memainkan peranan penting dalam prestasi pengoksidaan lebih daripada nisbah molar Mn3 +/Mn4 +.

 

Kata kunci: Keadaan pengoksidaan; pemangkin termal; pengoksidaan toluena; penyingkiran VOC; XPS

RUJUKAN

Brock, S.L., Duan, N., Tian, Z.R., Giraldo, O., Hua, Z. & Suib, S.L. 1998. A review of porous manganese oxide materials. Chemistry of Materials 10(10): 2619-2628.

Calvert, C., Joesten, R., Ngala, K., Villegas, J., Morey, A., Shen, X. & Suib S.L. 2008. Synthesis, characterization, and rietveld refinement of tungsten-framework-doped porous manganese oxide (K-OMS-2) material. Chemistry of Materials 20(20): 6382-6388.

Chen, T., Dou, H., Li, X., Tang, X., Li, J. & Hao, J. 2009. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous and Mesoporous Materials 122(1-3): 270-274.

Chen, X., Shen, Y.F., Suib, S.L. & O'Young, C.L. 2002 Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants. Chemistry of Materials 14(2): 940-948.

Christel, L., Pierre, A. & Abel, D.A.M.R. 1997. Temperature programmed reduction studies of nickel manganite spinels. Thermochimica Acta 306(1-2): 51-59.

Cockayne, E., Levin, I., Wu, H. & Llobet, A. 2013. Magnetic structure of bixbyite a-Mn2O3: A combined DET+U and neutron diffraction study. Physical Review B 87(18): 184413.

De Luna, M.D., Millanar, J., Yodsa-nga, A. & Wantala, K., 2017. Gas phase catalytic oxidation of VOCS using hydrothermally synthesized nest-like K-OMS 2 catalyst. Sains Malasiana 46(2): 275-283.

Deng, Y.Q., Zhang, T., Au, C.T. & Yin, S.F. 2014. Oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral molecular sieves of different morphologies. Catalysis Communications 43: 126-130.

Dong, C., Liu, X., Guan, H., Xiao, X. & Wang, Y. 2017. Combustion synthesized hierarchically porous Mn3O4 for catalytic degradation of methyl orange. The Canadian Journal of Chemical Engineering 95(4): 643-647.

Doucet, N., Bocquillon, F., Zahraa, O. & Bouchy, M. 2006. Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere 65(7): 1188-1196.

El-Sawy, A.M., King’ondu, C.K., Kuo, C.H., Kriz, D.A., Guild, C.J., Meng, Y., Frueh, S.J., Dharmarathna, S., Ehrlich, S.N. & Suib, S.L. 2014. X-ray absorption spectroscopic study of a highly thermally stable manganese oxide octahedral molecular sieve (OMS-2) with high oxygen reduction reaction activity. Chemistry of Materials 26(19): 5752-5760.

Fang, J., Li, J., Gao, L., Jiang, X., Zhang, J, Xu, A. & Li, X. 2017. Synthesis of OMS-2/graphite nanocomposites with enhanced activity for pollutants degradation in the presence of peroxymonosulfate. Journal of Colloid and Interface Science 494: 185-193.

Feng, Q., Kanoh, H. & Ooi, K. 1999. Manganese oxide porous crystals. Journal of Materials Chemistry 9(2): 319-333.

Fu, Z., Liu, L., Song, Y., Ye, Q., Cheng, S., Kang, T. & Dai, H. 2017. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading. Frontiers of Chemical Science and Engineering 11(2): 185-196.

Gandhe, A.R., Rebello, J.S., Figueiredo, J.L. & Fernandes, J.B. 2007. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate. Applied Catalysis B: Environmental 72(1-2): 129-135.

Genuino, H.C., Meng, Y., Horvath, D.T., Kuo, C.H., Seraji, M.S., Morey, A.M., Joesten, R.L. & Suib, S.L. 2013. Enhancement of catalytic activities of octahedral molecular sieve manganese oxide for total and preferential CO oxidation through vanadium ion framework substitution. ChemCatChem 5(8): 2306-2317.

Ghosh, R., Shen, X., Villegas, J.C., Ding, Y., Malinger, K. & Suib, S.L. 2006. Role of manganese oxide octahedral molecular sieves in styrene epoxidation. The Journal of Physical Chemistry B 110(14): 7592-7599.

Hou, J., Li, Y., Mao, M., Zhao, X. & Yue, Y. 2014. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale 6(24): 15048-15058.

Hou, J., Li, Y., Liu, L., Ren, L. & Zhao, X. 2013a. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. Journal of Materials Chemistry A 1(23): 6736-6741.

Hou, J., Liu, L., Li, Y., Mao, M., Lv, H. & Zhao, X. 2013b. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environmental Science & Technology 47(23): 13730-13736.

Iyer, A., Galindo, H., Sithambaram, S., King'ondu, C., Chen, C.H. & Suib, S.L. 2010. Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Applied Catalysis A: General 375(2): 295-302.

Jia, J., Zhang, P. & Chen, L. 2016. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone. Catalysis Science & Technology 6(15): 5841-5847.

King'ondu, C.K., Opembe, N., Chen, C.H., Ngala, K., Huang, H., Iyer, A., Garces, H.F. & Suib, S.L. 2011. Manganese oxide octahedral molecular sieves (OMS-2) multiple framework substitutions: A new route to OMS-2 particle size and morphology control. Advanced Functional Materials 21(2): 312-323.

Kowalski, J. & DeBeer, S. 2015 The role of X-ray spectroscopy in understanding the geometric and electronic structure of nitrogenase. Biochimica et Biophysica Acta 1853(6): 1406- 1415.

Kumar, R., Sithambaram, S. & Suib, S.L. 2009. Cyclohexane oxidation catalyzed by manganese oxide octahedral molecular sieves - Effect of acidity of the catalyst. Journal of Catalysis 262(2): 304-313.

Li, D.Y., Liu, H.D. & Chen, Y.F. 2011. Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene. Huan Jing Ke Xue= Huanjing Kexue 32(12): 3657-3661.

Liu, L., Song, Y., Fu, Z., Ye, Q., Cheng, S., Kang, T. & Dai, H. 2017. Effect of preparation method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the oxidation of carbon monoxide, toluene, and ethyl acetate. Applied Surface Science 396: 599-608.

Luo, J., Zhang, Q., Huang, A. & Suib, S.L. 2000. Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves. Microporous and Mesoporous Materials 35-36: 209-217.

Mahdavi, V. & Soleimani, S. 2014. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase. Materials Research Bulletin 51: 153-160.

Millanar, J.M., De Luna, M.D.G., Yodsa-Nga, A. & Wantala, K. 2018. Toluene oxidation using K-OMS-2 synthesized via hydrothermal process by central composite design. Chiang Mai Journal of Science 45(2): 1030-1038.

Mosa, I.M., Biswas, S., El-Sawy, A.M., Botu, V., Guild, C., Song, W., Ramprasad, R., Rusling, J. & Suib, S.L. 2015. Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions. Journal of Materials Chemistry A 4(2): 620-631.

Ousmane, M., Perrussel, G., Yan, Z., Clacens, J.M., De Campo, F. & Pera-Titus, M. 2014. Highly selective direct amination of primary alcohols over a Pd/K-OMS-2 catalyst. Journal of Catalysis 309: 439-452.

Pan, F., Liu, W., Yu, Y., Yin, X., Wang, Q., Zheng, Z., Wu, M., Zhao, D., Zhang, Q., Lei, X. & Xia, D. 2016. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment. Scientific Reports 6(1): 37518.

Said, S., Maghrabi, H.H.E., Riad, M. & Mikhail, S. 2018. Photo-catalytic selective organic transformations by Fe-doped octahedral molecular sieves (manganese oxide) nano-structure. Journal of Asian Ceramic Societies 6(2): 169-181.

Said, S., Riad, M., Helmy, M., Mikhail, S. & Khalil, L. 2016. Preparation of nano-structured cryptomelane materials for catalytic oxidation reactions. Journal of Nanostructure in Chemistry 6(2): 171-182.

Said, S., Riad, M., Helmy, M., Mikhail, S. & Khalil, L. 2014. Effect of the different preparation methods on the characterization and the catalytic activity of the nano-structured cryptomelane materials. Chemistry and Materials Research 6(12): 27-41.

Santos, V.P., Bastos, S.S.T., Pereira, M.F.R., Orfao, J.J.M. & Figueiredo, J.L. 2010. Stability of a cryptomelane catalyst in the oxidation of toluene. Catalysis Today 154(3-4): 308-311.

Schurz, F., Bauchert, J.M., Merker, T., Schleid, T., Hasse, H. & Glaser, R. 2009. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies: Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Applied Catalysis A: General 355(1-2): 42-49.

Shi, F., Wang, F., Dai, H., Dai, J., Deng, J., Liu, Y., Bai, G., Ji, K. & Au, C.T. 2012. Rod-, flower-, and dumbbell-like MnO2: Highly active catalysts for the combustion of toluene. Applied Catalysis A: General 433-434: 206-213.

Shanthakumar, S., Xu, L., Chen, C.H., Ding, Y., Kumar, R., Calvert, C. & Suib, S.L. 2009. Manganese octahedral molecular sieve catalysts for selective styrene oxide ring opening. Catalysis Today 140(3-4): 162-168.

Soares, O.S.G.P., Rocha, R.P., Orfao, J.J.M., Pereira, M.F.R. & Figueiredo, J.L. 2018. Ethyl and butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis 39(1): 27-36.

Stobbe, E.R., de Boer, B.A. & Geus, J.W. 1999. The reduction and oxidation behaviour of manganese oxides. Catalysis Today 47(1-4): 161-167.

Suib, S.L. 2008. Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. Journal of Materials Chemistry 18(14): 1623-1631.

Sun, H., Liu, Z., Chen, S. & Quan, X. 2015. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chemical Engineering Journal 270: 58-65.

Sun, H., Chen, S., Wang, P. & Quan, X. 2011. Catalytic oxidation of toluene over manganese oxide octahedral molecular sieves (OMS-2) synthesized by different methods. Chemical Engineering Journal 178: 191-196.

Sun, L., Cao, Q., Hu, B., Li, J., Hao, J., Jing, G. & Tang, X. 2011. Synthesis, characterization and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH3. Applied Catalysis A: General 393(1-2): 323-330.

Sun, M., Zhang, B., Liu, H., He, B., Ye, F., Yu, L., Sun, C. & Wen, H. 2017. The effect of acid/alkali treatment on the catalytic combustion activity of manganese oxide octahedral molecular sieves. RSC Advances 7(7): 3958-3965.

Tang, X., Li, J. & Hao, J. 2010. Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catalysis Communications 11(10): 871-875.

Wang, C., Ma, J., Liu, F., He, H. & Zhang, R. 2015. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. The Journal of Physical Chemistry C 119(40): 23119-23126.

Wang, R. & Li, J. 2010. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environmental Science & Technology 44(11): 4282-4287.

Wang, R. & Li, J. 2009. OMS-2 catalysts for formaldehyde oxidation: Effects of Ce and Pt on structure and performance of the catalysts. Catalysis Letters 131(3-4): 500-505.

Xie, Y., Guo, Y., Guo, Y., Wang, L., Zhan, W., Wang, Y., Gong, X. & Lu, G. 2016. A highly effective Ni-modified MnOx catalyst for total oxidation of propane: The promotional role of nickel oxide. RSC Advances 6(55): 50228-50237.

Yang, X., Han, J., Du, Z., Yuan, H., Jin, F. & Wu, Y. 2010. Effect of Pb dopant on structure and activity of Pd/K-OMS-2 catalysts for heterogeneous oxidative carbonylation of phenol. Catalysis Communications 11(7): 643-646.

Yin, H., Dai, X., Zhu, M., Li, F., Feng, X. & Liu, F. 2015. Fe-doped cryptomelane synthesized by refluxing at atmosphere: Structure, properties and photocatalytic degradation of phenol. Journal of Hazardous Materials 296: 221-229.

Yodsa-nga, A., Millanar, J.M., Neramittagapong, A., Khemthong, P. & Wantala, K. 2015. Effect of manganese oxidative species in as-synthesized K-OMS-2 on the oxidation of benzene. Surface and Coatings Technology 271: 217-224.

Yu, L., Diao, G., Ye, F., Sun, M., Zhou, J., Li, Y. & Liu, Y. 2011. Promoting effect of Ce in Ce/OMS-2 catalyst for catalytic combustion of dimethyl ether. Catalysis Letters 141(1): 111-119.

Yu, L., Sun, M., Yu, J., Yu, Q., Hao, Z. & Li, C. 2008. Synthesis and characterization of manganese oxide octahedral molecular sieve and its catalytic performance for DME combustion. Chinese Journal of Catalysis 29(11): 1127-1132.

Zhang, Q., Wang, M., Zhang, T., Wang, Y., Tang, X. & Ning, P. 2015. A stable Ni/SBA-15 catalyst prepared by the ammonia evaporation method for dry reforming of methane. RSC Advances 5(114): 94016-94024.

Zhang, T., Liu, J. & Sun, D.D. 2012. A novel strategy to fabricate inorganic nanofibrous membranes for water treatment: Use of functionalized graphene oxide as a cross linker. RSC Advances 2(12): 5134-5137.

 

*Pengarang untuk surat-menyurat; email: kitirote@kku.ac.th

 

 

 

sebelumnya