Sains Malaysiana 48(9)(2019): 1833–1840
http://dx.doi.org/10.17576/jsm-2019-4809-04
Investigation of
Boldine as a Potential Telomerase Inhibitor by Downregulation of hTERT/hTERC in
HCT 116 Human Colon Carcinoma Cells
(Kajian Boldina sebagai
Perencat Telomerase Berpotensi oleh Pengawalaturan Rendah hTERT/hTERC dalam HCT 116 Karsinoma Sel Kolon Manusia)
NADHIRAH AHMAD, CHING JOO JIE
& NAZIA ABDUL MAJID*
Institute
of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
Diserahkan:
25 September 2018/Diterima: 24 Jun 2019
ABSTRACT
Telomerase, a
ribonucleoprotein (RNP) complex, is a type of RNA-dependent DNA polymerase that synthesises telomeric DNA repeats
(TTAGGG)
at the 3’ end of chromosomes. Most of the cancer cells express high level of
telomerase which results in cellular immortality. The high telomerase activity
in cancer cells can be detected via expression of human TERT (hTERT),
the catalytic protein subunit of telomerase, and expression of human TERC (hTERC), the RNA component in telomerase. Boldine,
a natural alkaloid compound, was shown to have anticancer properties on various
types of cancer cells, but the anti-telomerase property was poorly understood.
This study was carried out to investigate the ability of boldine in targeting
telomerase on the human colon cancer cell line, HCT 116,
by analyzing the expression of hTERT and hTERC. Boldine was shown to have a
time- and dose-dependent cytotoxic effect on HCT 116
cell line in SRB assay. The protein expression of hTERT was assessed
through Western blot where it was observed to be down-regulated upon boldine
treatment compared to control. The cells treated with boldine also exhibited a
down-regulation of mRNA expression for both hTERT and hTERC in Real Time PCR (qRT-PCR).
The down-regulation of hTERT protein expression correlated with the reduced
hTERC mRNA expression in qRT-PCR. The observations on the
down-regulation of protein and mRNA expressions of telomerase related genes,
hTERT and hTERC, in this study suggested that boldine might become a
significant candidate for telomerase-targeted anti-cancer therapy.
Keywords: Boldine;
cancer; hTERC; hTERT; telomerase
ABSTRAK
Telomerase, iaitu satu
kompleks ribonukleoprotein (RNP) merupakan sejenis DNA polimerase
bersandar RNA yang mensintesis telomerik DNA berulangan
(TTAGGG)
pada hujung kromosom. Kebanyakan sel kanser mengekspres telomerase pada tahap
yang tinggi dan akan mengakibatkan sel mencapai keabadian. Aktiviti telomerase
yang tinggi dalam sel kanser dapat dikesan melalui pengekspresan TERT manusia (hTERT) iaitu subunit protein katalitik telomerase dan
pengekspresan TERC manusia (hTERC) iaitu komponen RNA dalam
telomerase. Boldina merupakan sebatian alkaloid semula jadi yang mempunyai
sifat antikanser terhadap pelbagai jenis sel kanser, namun begitu sifat
anti-telomerase masih kurang difahami. Kajian ini dijalankan untuk mengkaji
keupayaan boldina untuk mensasarkan telomerase dalam titisan sel kanser kolon
manusia, HCT 116 dengan menganalisis pengekspresan hTERT dan
hTERC. Boldina dikatakan mempunyai kesan sitotoksik yang bersandar kepada masa
and dos terhadap titisan sel HCT 116 dalam asai SRB.
Pengekspresan protein hTERT telah dinilai melalui Western blot dengan
pengawalaturannya menurun selepas rawatan dengan boldina berbanding kawalan.
Sel yang dirawat dengan boldina juga menunjukkan pengawalaturan yang menurun
bagi pengekspresan mRNA untuk kedua-dua hTERT dan hTERC melalui PCR masa
sebenar (qRT-PCR). Pengawalaturan yang menurun bagi pengekspresan
protein hTERT didapati berkorelasi dengan pengurangan pengekspresan mRNA hTERC
melalui qRT-PCR. Pemerhatian terhadap pengawalaturan yang menurun
bagi pengekspresan protein dan mRNA gen berkait telomerase, hTERT dan hTERC
dalam kajian ini mencadangkan bahawa boldina berkemungkinan menjadi calon
penting untuk terapi antikanser yang mensasarkan telomerase.
Kata kunci: Boldina; hTERC; hTERT; kanser; telomerase
RUJUKAN
Akıncılar, S.C., Low, K.C., Liu, C.Y., Yan, T.D., Oji,
A., Ikawa, M., Li, S. & Tergaonkar, V. 2015. Quantitative assessment of
telomerase components in cancer cell lines. FEBS Letters 589(9):
974-984.
Aljarbou, F., Almousa, N., Bazzi, M., Aldaihan, S., Alanazi, M.,
Alharbi, O., Almadi, M., Aljebreen, A.M., Azzam, N.A., Arafa, M.,
Aldbass, A., Shaik, J., Alasirri, S., Warsy, A., Alamri, A., Parine,
N.R. & Alamro, G. 2018. The expression of telomere-related proteins
and DNA damage response and their association with telomere length
in colorectal cancer in Saudi patients. PloS ONE 13(6): e0197154.
Avilion, A.A., Piatyszek, M.A., Gupta, J., Shay, J.W., Bacchetti,
S. & Greider, C.W. 1996. Human telomerase RNA and telomerase activity in
immortal cell lines and tumor tissues. Cancer Research 56(3): 645-650.
Ayiomamitis, G.D., Notas, G., Zaravinos, A., Zizi-Sermpetzoglou,
A., Georgiadou, M., Sfakianaki, O. & Kouroumallis, E. 2014. Differences in
telomerase activity between colon and rectal cancer. Canadian Journal of
Surgery 57(3): 199-208.
Baena-del Valle, J.A., Zheng, Q., Esopi, D.M., Rubenstein, M., Hubbard,
G.K., Moncaliano, M.C., Hruszkewycz, A., Vaghasia, A., Yegnasubramanian,
S., Wheelan, S.J., Meeker, A.K., Heaphy, C.M., Graham, M.K. &
De Marzo, A.M. 2018. MYC drives overexpression of telomerase RNA
(hTR/TERC) in prostate cancer. The Journal of Pathology 244(1):
11-24.
Beattie, T.L., Zhou, W., Robinson, M.O. & Harrington, L. 1998.
Reconstitution of human telomerase activity in vitro. Current Biology 8(3): 177-180.
Bertorelle, R., Rampazzo, E., Pucciarelli, S., Nitti, D. & De
Rossi, A. 2014. Telomeres, telomerase and colorectal cancer. World Journal
of Gastroenterology 20(8): 1940-1950.
Boscolo-Rizzo, P., Da Mosto, M.C., Rampazzo, E., Giunco, S., Del
Mistro, A., Menegaldo, A., Baboci, L., Mantovani, M., Tirelli, G. & De
Rossi, A. 2016. Telomeres and telomerase in head and neck squamous cell
carcinoma: From pathogenesis to clinical implications. Cancer and Metastasis
Reviews 35(3): 457-474.
Cayuela, M.L., Flores, J.M. & Blasco, M.A. 2005. The
telomerase RNA component Terc is required for the tumour‐promoting
effects of Tert overexpression. EMBO Reports 6(3): 268-274.
Celeghin, A., Giunco, S., Freguja, R., Zangrossi, M., Nalio, S.,
Dolcetti, R. & De Rossi, A. 2016. Short-term inhibition of TERT induces
telomere length-independent cell cycle arrest and apoptotic response in
EBV-immortalized and transformed B cells. Cell Death & Disease 7(12):
e2562.
Chadeneau, C., Hay, K., Hirte, H.W., Gallinger, S. &
Bacchetti, S. 1995. Telomerase activity associated with acquisition of
malignancy in human colorectal cancer. Cancer Research 55(12):
2533-2536.
Chen,
R.J., Wu, P.H., Ho, C.T., Way, T.D., Pan, M.H., Chen, H.M., Ho, Y.S. &
Wang, Y.J. 2017. P53-dependent downregulation of hTERT protein expression and
telomerase activity induces senescence in lung cancer cells as a result of
pterostilbene treatment. Cell Death & Disease 8(8): e2985.
Cong,
Y.S., Wright, W.E. & Shay, J.W. 2002. Human telomerase and its regulation. Microbiology
and Molecular Biology Reviews 66(3): 407-425.
Cristofari,
G. & Lingner, J. 2006. Telomere length homeostasis requires that telomerase
levels are limiting. The EMBO Journal 25(3): 565-574.
Feng,
J., Funk, W.D., Wang, S.S., Weinrich, S.L., Avilion, A.A., Chiu, C.P., Adams,
R.R., Chang, E., Allsopp, R.C., Yu, J., Le, S., West, M.D., Harley, C.B.,
Andrews, W.H., Greider, C.W. & Villeponteau, B. 1995. The RNA component of
human telomerase. Science 269(5228): 1236-1241.
Fernández-Marcelo,
T., Gómez, A., Pascua, I., de Juan, C., Head, J., Hernando, F., Jarabo, J.R.,
Calatayud, J., Torres- García, A.J. & Iniesta, P. 2015. Telomere length and
telomerase activity in non-small cell lung cancer prognosis: Clinical
usefulness of a specific telomere status. Journal of Experimental &
Clinical Cancer Research 34(1): 78.
Günes,
Ç., Lichtsteiner, S., Vasserot, A.P. & Englert, C. 2000. Expression of the
hTERT gene is regulated at the level of transcriptional initiation and
repressed by Mad1. Cancer Research 60(8): 2116-2121.
Herbert,
B.S., Pitts, A.E., Baker, S.I., Hamilton, S.E., Wright, W.E., Shay, J.W. &
Corey, D.R. 1999. Inhibition of human telomerase in immortal human cells leads
to progressive telomere shortening and cell death. Proceedings of The
National Academy of Sciences 96(25): 14276-14281.
Houghton,
P., Fang, R., Techatanawat, I., Steventon, G., Hylands, P.J. & Lee, C.C.
2007. The sulphorhodamine (SRB) assay and other approaches to testing plant
extracts and derived compounds for activities related to reputed anticancer
activity. Methods 42(4): 377-387.
Ishikawa,
F. 1997. Regulation mechanisms of mammalian telomerase. A review. Biochemistry-New
York-English Translation of Biokhimiya 62(11): 1332-1337.
Jafri,
M.A., Ansari, S.A., Alqahtani, M.H. & Shay, J.W. 2016. Roles of telomeres
and telomerase in cancer, and advances in telomerase-targeted therapies. Genome
Medicine 8(1): 69.
Leão,
R., Apolónio, J.D., Lee, D., Figueiredo, A., Tabori, U. & Castelo-Branco,
P. 2018. Mechanisms of human telomerase reverse transcriptase (h TERT)
regulation: Clinical impacts in cancer. Journal of Biomedical Science 25(1):
22.
Makki,
J. 2015. Telomerase activity in breast cancer, promising marker of disease
progression. Telomere and Telomerase 2: e681
Nakajima,
A., Tauchi, T., Sashida, G., Sumi, M., Abe, K., Yamamoto, K., Ohyashiki, J.H.
& Ohyashiki, K. 2003. Telomerase inhibition enhances apoptosis in human
acute leukemia cells: Possibility of antitelomerase therapy. Leukemia 17(3):
560-567.
Nakamura,
R.M. & Kasahara, Y. 2010. Molecular diagnostics in the evaluation
of cancer: Modern concepts and overview. In Molecular Diagnostics:
Techniques and Applications for the Clinical Laboratory. Massachusetts:
Academic Press. pp. 215-223
Natarajan,
S., Chen, Z., Wancewicz, E.V., Monia, B.P. & Corey, D.R. 2004. Telomerase
reverse transcriptase (hTERT) mRNA and telomerase RNA (hTR) as targets for
downregulation of telomerase activity. Oligonucleotides 14(4): 263-273.
Noureini,
S.K. & Wink, M. 2015a. Dose-dependent cytotoxic effects of boldine in
HepG-2 cells-Telomerase inhibition and apoptosis induction. Molecules 20(3):
3730-3743.
Noureini,
S.K. & Tanavar, F. 2015b. Boldine, a natural aporphine alkaloid, inhibits
telomerase at non-toxic concentrations. Chemico-Biological Interactions 231:
27-34.
Noureini,
S.K., Kheirabadi, M., Masoumi, F., Khosrogerdi, F., Zarei, Y., Suárez-Rozas,
C., Salas-Norambuena, J. & Kennedy Cassels, B. 2018. Telomerase inhibition
by a new synthetic derivative of the aporphine alkaloid boldine. International
Journal of Molecular Sciences 19(4): 1239.
Shimojima,
M., Komine, F., Hisatomi, H., Shimizu, T., Moriyama, M. & Arakawa, Y. 2004.
Detection of telomerase activity, telomerase RNA component, and telomerase
reverse transcriptase in human hepatocellular carcinoma. Hepatology Research 29(1): 31-38.
Weinrich,
S.L., Pruzan, R., Ma, L., Ouellette, M., Tesmer, V.M., Holt, S.E., Bodnar,
A.G., Lichtsteiner, S., Kim, N.W., Trager, J.B., Taylor, R.D., Carlos, R.,
Andrews, W.H., Wright, W.E., Shay, J.W., Harley, C.B. & Morin, G.B. 1997.
Reconstitution of human telomerase with the template RNA component hTR and the
catalytic protein subunit hTRT. Nature Genetics 17(4): 498-502.
Wong,
M.S., Wright, W.E. & Shay, J.W. 2014. Alternative splicing regulation of
telomerase: A new paradigm? Trends in Genetics 30(10): 430-438.
Xi,
L. & Cech, T.R. 2014. Inventory of telomerase components in human cells
reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Research 42(13):
8565-8577.
Xu,
Y. & Goldkorn, A. 2016. Telomere and telomerase therapeutics in cancer. Genes 7(6): 22.
*Pengarang untuk
surat-menyurat; email: nazia@um.edu.my
|