Sains Malaysiana 48(9)(2019): 2007–2019

http://dx.doi.org/10.17576/jsm-2019-4809-22

 

Osteoporosis: Possible Pathways Involved and the Role of Natural Phytoestrogens in Bone Metabolism

(Osteoporosis: Laluan yang Mungkin Terlibat dan Peranan Fitoestrogen Semula Jadi dalam Metabolisme Tulang)

 

ZAR CHI THENT1, SRIJIT DAS2*, PASUK MAHAKKANUKRAUH3 & VIRGINIA LANZOTTI4

 

1Anatomy Discipline, Basic Medical Science Cluster, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 UiTM Sungai Buloh, Selangor Darul Ehsan, Malaysia

2Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Forensic Osteology Research and Training Centre, Excellence Center of Osteology Research and, Training Center & Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

 

4Department of Agricultural Sciences, Università di Napoli Federico II, Napoli, Italy

 

Diserahkan: 17 Mei 2019/Diterima: 5 Julai 2019

 

ABSTRACT

The incidence of post-menopausal osteoporosis is increasing globally. In post-menopausal osteoporosis, there is deficiency in oestrogen level resulting in bone loss and fractures. Bone formation is under the control of different hormones. In the present review, we highlight few pathways such as RANKL/RANK, apoptosis and Wnt/β-catenin signalling pathways and phytoestrogens involved in the bone metabolism. RANKL/RANK signalling is responsible for regulating the formation and activation of multinucleated osteoclasts from their precursors which is responsible for the survival of normal bone remodelling. Apoptosis regulates the development, growth and maintains the bone tissues. The Wnt pathway is an important pharmacological target for bone anabolic drugs and its future discovery. In today’s world, herbal remedies are used to treat post-menopausal osteoporosis as these products contain phytoestrogens. These phytoestrogens are oestrogen like compounds which influence bone metabolism. The phytoestrogens provide better therapeutic effect in reducing the RANKL, osteoclastogenesis, inflammatory markers, and increase the osteogenic markers in the bone cells or osteoblasts. We discuss the mechanism of action of few phytoestrogens such as genistein, daidzein and equol which are beneficial for improvement of the bone health. Daidzein enhances osteoblast growth via the upregulation of BMP expression in primary osteoblast cells and it is a potential antiosteoporotic agent. Genistein also possesses antioestrogenic property by virtue of its competitive binding to the same receptors as oestradiol. Equol regulates the bone loss via hemopoiesis and inflammatory cytokine production. Thus, phytoestrogens could be efficiently used as osteoprotective agents for the treatment of individuals with post-menopausal osteoporosis.

 

Keywords: Fracture; oestrogen; pharmacology; post-menopausal; treatment

 

ABSTRAK

Kejadian osteoporosis selepas menopaus meningkat secara global. Dalam osteoporosis selepas menopaus, terdapat penurunan aras estrogen yang mengakibatkan kehilangan tulang dan patah tulang. Pembentukan tulang dikawal oleh hormon yang berbeza. Dalam ulasan kepustakaan ini, kami menyerlahkan beberapa laluan isyarat seperti RANKL/ RANK, apoptosis dan Wnt/β-catenin serta fitoestrogens yang terlibat dalam metabolisme tulang. Isyarat RANKL/RANK bertanggungjawab mengawal pembentukan dan pengaktifan osteoklas multinukleus daripada prekursor mereka yang terlibat dalam proses pembentukan semula tulang yang normal. Apoptosis mengawal perkembangan, pertumbuhan dan penyelenggaraan tisu tulang. Laluan Wnt adalah sasaran farmakologi yang penting untuk ubat anabolik tulang dan penemuan masa depannya. Di dunia hari ini, banyak ubat-ubatan herba digunakan untuk merawat osteoporosis Osteoporosis: Possible menopaus kerana produk ini mengandungi fitoestrogen. Fitoestrogen mempunyai struktur seperti estrogen yang mempengaruhi metabolisme tulang. Fitoestrogen memberikan kesan terapeutik yang lebih baik dalam mengurangkan RANKL, osteoklastogenesis, penanda inflamasi dan meningkatkan penanda osteogenik dalam sel-sel tulang atau pun osteoblas. Kami membincangkan mekanisme tindakan beberapa fitoestrogen seperti genistein, daidzein dan equol yang bermanfaat untuk kesihatan tulang. Daidzein meningkatkan pertumbuhan osteoblas melalui peningkatan ekspresi BMP dalam sel osteoblas primer dan ia adalah agen antiosteoporotik yang berpotensi. Genistein juga mempunyai harta antioestrogenik berdasarkan daya saingnya yang kompetitif kepada reseptor yang sama seperti oestradiol. Equol mengawal kehilangan tulang melalui hemopoiesis dan penghasilan sitokin inflamasi. Oleh itu, fitoestrogen boleh digunakan sebagai agen osteoperlindungan untuk rawatan osteoporosis selepas menopaus.

 

Kata kunci: Estrogen; farmakologi; patah tulang; selepas menopaus; rawatan

RUJUKAN

Adlercreutz, H. 2002. Phyto-oestrogens and cancer. Lancet. Oncol. 3(6): 364-373.

Adjakly, M., Ngollo, M., Boiteux, J.P., Bignon, Y.J., Guy, L. & Bernard-Gallon, D. 2013. Genistein and daidzein: Different molecular effects on prostate cancer. Anticancer Res. 33(1): 39-44.

Ajdžanovic, V.Z., Trifunovic, S., Miljic, D., Šošic-Jurjevic, B., Filipovic, B., Miler, M., Ristic, N., Manojlovic-Stojanoski, M. & Miloševic, V. 2018. Somatopause, weaknesses of the therapeutic approaches and the cautious optimism based on experimental ageing studies with soy isoflavones. EXCLI J. 17: 279-301.

Al-Anazi, A.F., Quresh, V.F., Javaid, K. & Qureshi, S. 2011. Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: An overview. J. Nat. Sci. Biol. Med. 2(2): 154-163.

Almeida, M., Iyer, S., Martin-Millan, M., Bartell, S.M., Han, L., Ambrogini, E., Onal, M., Xiong, J., Weinstein, R.S., Jilka, R.L., O'Brien, C.A. & Manolagas, S.C. 2013. Estrogen receptor-α signaling in osteoblast progenitors stimulates cortical bone accrual. J. Clin. Invest. 123(1): 394-404.

Ambati, S., Miller, C.N., Bass, E.F., Hohos, N.M., Hartzell, D.L., Kelso, E.W., Trunnell, E.R., Yang, J.Y., Della-Fera, M.A., Baile, C.A. & Rayalam, S. 2018. Synergistic phytochemicals fail to protect against ovariectomy induced bone loss in rats. J. Med. Food 21(10): 1044-1052.

Atmaca, A., Kleerekoper, M., Bayraktar, M. & Kucuk, O. 2008. Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 15(4): 748-757.

Ayyanan, A., Laribi, O., Schuepbach-Mallepell, S., Schrick, C., Gutierrez, M., Tanos, T., Lefebvre, G., Rougemont, J., Yalcin-Ozuysal, O. & Brisken, C. 2011. Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number. Mol. Endocrinol. 25(11): 1915- 1923.

Babu, P.V.A., Si, H., Fu, Z., Zhen, W. & Liu, D. 2012. Genistein prevents hyperglycemia induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J. Nutr. 142(4): 724-730.

Bakre, M.M., Hoi, A., Mong, J.C., Koh, Y.Y., Wong, K.Y. & Stanto, L.W. 2007. Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J. Biol. Chem. 282(43): 31703-31712.

Banerjee, C., Mccabe, L.R., Choi, J., Hiebert, S.W., Stein, J.L., Stein, G.S. & Lian, J.B. 1997. Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J. Cell Biochem. 66(1): 1-8.

Benassayag, C., Ferre, F. & Perrot-Applanat, M. 2002. Phytoestrogens as modulators of steroidaction in target cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 777(1-2): 233-248.

Bennett, C.N., Longo, K.A., Wright, W.S., Suva, L.J., Lane, T.F., Hankenson, K.D. & MacDougald, O.A. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 102(9): 3324-3329.

Bliuc, D., Nguyen, N.D., Nguyen, T.V., Eisman, J.A. & Center, J.R. 2013. Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men. J. Bone Miner. Res. 28(11): 2317-2324.

Brown, S.D., Twells, R.C.J., Hey, P.J., Cox, R.D., Levy, E.R., Soderman, A.R., Metzker, M.L., Caskey, C.T., Todd, J.A. & Hess, J.F. 1998. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem. Biophys. Res. Commun. 248(3): 879-888.

Carlsen, E., Giwercman, A. & Skakkebaek, N.E. 1993. Declining sperm counts and increasing incidence of testicular cancer and other gonadal disorders: Is there a connection? Ir. Med. J. 86(3): 85-96.

Cassidy, A., Albertazzi, P., Lise Nielsen, I., Hall, W., Williamson, G., Tetens, I., Atkins, S., Cross, H., Manios, Y., Wolk, A., Steiner, C. & Branca, F. 2006. Critical review of health effects of soyabean phytooestrogens in post-menopausal women. Proc. Nutr. Soc. 65(1): 76-92.

Chan, C.Y., Norazlina, M., Ima-Nirwana, S. & Kok, Y.C. 2018. Attitude of Asians to calcium and vitamin D rich foods and supplements: A systematic review. Sains Malaysiana 47(8): 1801-1810.

Chang, H.H., Robinson, A.R. & Common, R.H. 1975. Excretion of radioactive diadzein and equol as monosulfates and disulfates in the urine of the laying hen. Can. J. Biochem. 53(2): 223-230.

Chen, Y.M., Ho, S.C., Lam, S.S., Ho, S.S. & Woo, J.L. 2003. Soy isoflavones have a favorable effect on bone loss in chinese postmenopausal women with lower bone mass: A double-blind, randomized, controlled trial. J. Clin. Endocrinol. Metab. 88(10): 4740-4747.

Chen, Y., Cass, S.L., Kutt, S.K., Yee, E.M.H., Chan, D.S.H., Gardner, C.R., Vittorio, O., Pasquier, E., Black, D.S. & Kumar, N. 2015. Bioorganic & medicinal chemistry letters synthesis, biological evaluation and structure - Activity relationship studies of isoflavene based Mannich bases with potent anticancer activity. Bioorganic & Medicinal Chemistry Letters 25(22): 5377-5383.

Chiodini, I., Carnevale, V., Torlontano, M., Fusilli, S., Guglielmi, G., Pileri, M., Modoni, S., Di Giorgio, A., Liuzzi, A., Minisola, S., Cammisa, M., Trischitta, V. & Scillitani, A. 1998. Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: Study in eumenorrheic patients with Cushing's Syndrome. J. Clin. Endocrinol. Metab. 83: 1863-1867.

Christian, S., Wallaschofski, H., Nauck, M., Völzke, H., Schober, H.C. & Hannemann, A. 2015. Fracture risk and risk factors for osteoporosis: Results from two representative population-based studies in North East Germany (Study of Health in Pomerania: SHIP-2 and SHIP-Trend). Dtsch. Arztebl. Int. 112 (21-22): 365-371.

Cornwell, T., Cohick, W. & Raski, I. 2004. Dietary phytoestrogens and health. Phytochemistry 65(8): 995-1016.

Danciu, C., Soica, C., Csanyi, E., Ambrus, R., Feflea, S., Peev, C. & Dehelean, C. 2012. Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives. Chem. Cent. J. 6(1): 58.

Delmas, P.D. 2002. Treatment of postmenopausal osteoporosis. Lancet 359(9322): 2018-2026.

De Wilde, A., Lieberherr, M., Colin, C. & Pointillart, A. 2004. A low dose of daidzein acts as an ERβ-selective agonist in trabecular osteoblasts of young female piglets. J. Cell Physiol. 200(2): 253-262.

Dixon, R.A. 2004. Phytoestrogens. Annu. Rev. Plant Biol. 55: 225-261.

Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. 1997. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89(5): 747-754.

Fritz, H., Seely, D., Flower, G., Skidmore, B., Fernandes, R., Vadeboncoeur, S., Kennedy, D., Cooley, K., Wong, R., Sagar, S., Sabri, E. & Fergusson, D. 2013. Soy, red clover, and isoflavones and breast cancer: A systematic review. PLoS ONE 8: e81968.

Froyen, E.B., Reeves, J.L.R., Mitchell, A.E. & Steinberg, F.M. 2009. Regulation of phase II enzymes by genistein and daidzein in male and female Swiss Webster mice. J. Med. Food 12(6): 1227-1237.

Fujioka, M., Uehara, M., Wu, J., Adlercreutz, H., Suzuki, K., Kanazawa, K., Takeda, K., Yamada, K. & Ishimi, Y. 2004. Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice. J. Nutr. 134(10): 2623-2627.

Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S. & Lian, J.B. 2005. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280(39): 33132-33140.

Ge, Y., Chen, D., Xie, L. & Zhang, R. 2006. Enhancing effect of daidzein on the differentiation and mineralization in mouse osteoblast-like MC3T3-E1 cells. Yakugaku Zasshi 126(8): 651-656.

Giner, M., Montoya, M.J., Vázquez, M.A., Miranda, C. & Pérez- Cano, R. 2013. Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord 25: 41.

Glass, D.A., Bialek, P., Ahn, J.D., Starbuck, M., Patel, M.S., Clevers, H., Taketo, M.M., Long, F., McMahon, A.P., Lang, R.A. & Karsenty, G. 2005. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8(5): 751-764.

Greenspan, S.L., Perera, S., Nace, D., Zukowski, K.S., Ferchak, M.A., Lee, C.J., Nayak, S. & Resnick, N.M. 2012. FRAX or fiction: Determining optimal screening strategies for treatment of osteoporosis in residents in long-term care facilities. J. Am. Geriatr. Soc. 60(4): 684-690.

Good, C.R., O’Keefe, R.J., Puzas, J.E., Schwarz, E.M. & Rosier, R.N. 2002. Immunohistochemistry study of receptor activator of nuclear kappa-B ligand (RANK-L) in human osteolytic bone tumors. J. Surg. Oncol. 79(3): 174-179.

Hajirahimkhan, A., Dietz, B.M. & Bolton, J.L. 2013. Botanical modulation of menopausal symptoms: Mechanisms of action? Planta. Med. 79(7): 538-553.

Hughes, D.E. & Boyce, B.F. 1998. Estrogen, transforming growth factor-beta, and the regulation of bone metabolism in health and disease. The Endocrinologist 8: 55-61.

Hwang, J.K., Min, K.H., Choi, K.H., Hwang, Y.C., Jeong, I.K., Ahn, K.J., Chung, H.Y. & Chang, J.S. 2013. Bisphenol A reduces differentiation and stimulates apoptosis of osteoclasts and osteoblasts. Life Sci. 93(9-11): 367-372.

Ibarreta, D., Daxenberger, A. & Meyer, H.H. 2001. Possible health impact of phytoestrogens and xenoestrogens in food. APMIS 109(3): 161-184.

Idrus, R.B.H., Sainik, N.Q.A.V., Ansari, A.S., Zulfarina, M.S., Razali, R.A., Nordin, A., Saim, A.B. & Naina-Mohamed, I. 2018. Ficus carica and bone health: A systematic review. Sains Malaysiana 47(11): 2741-2755.

Jia, T.L., Wang, H.Z., Xie, L.P., Wang, X.Y. & Zhang, R.Q. 2003. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem. Pharmacol. 65(5): 709-715.

Jin, D., Wu, X., Yu, H., Jiang, L., Zhou, P., Yao, X., Meng, J., Wang, L., Zhang, M. & Zhang, Y. 2018. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am. J. Transl. Res. 10(5): 1498-1510.

Jou, H.J., Wu, S.C., Chang, F.W., Ling, P.Y., Chu, K.S. & Wu, W.H. 2008. Effect of intestinal production of equol on menopausal symptoms in women treated with soy isoflavones. Int. J. Gynecol. Obstet. 102(1): 44-49.

Kanazawa, A., Tsukada, S., Sekine, A., Tsunoda, T., Takahashi, A., Kashiwagi, A., Tanaka, Y., Babazono, T., Matsuda, M., Kaku, K., Iwamoto, Y., Kawamori, R., Kikkawa, R., Nakamura, Y. & Maeda, S. 2004. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am. J. Hum. Genet. 75(5): 832-843.

Kang, J.S., Yoon, Y.D., Han, M.H., Han, S.B., Lee, K., Park, S.K. & Kim, H.M. 2007. Equol inhibits nitric oxide production and inducible nitric oxide synthase gene expression through down regulating the activation of Akt. Int. Immunopharmacol. 7(4): 491-499.

Kawamoto, E.M., Gleichmann, M., Yshii, L.M., Lima Lde, S., Mattson, M.P. & Scavone, C. 2012. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults. Braz. J. Med. Biol. Res. 45(1): 58-67.

Kolios, L., Sehmisch, S., Daub, F., Rack, T., Tezval, M., Stuermer, K.M. & Stuermer, E.K. 2009. Equol but not genistein improves early metaphyseal fracture healing in osteoporotic rats. Planta. Med. 75: 459-465.

Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S. & Kishimoto, T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5): 755-764.

Kong, Y.Y., Boyle, W.J. & Penninger, J.M. 1999. Osteoprotegerin ligand: A common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immun. Cell. Biol .77(2): 188-193.

Kwon, Y. 2014. Effect of soy isoflavones on the growth of human breast tumors: Findings from preclinical studies. Food Sci. Nutr. 2(6): 613-622.

Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J. & Boyle, W.J. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2): 165-176.

Lampe, J.W. 2003. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J. Nutr. 133(Suppl 3): 956S-964S.

Lane, N.E. 2006. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 1949: S3-S11.

Lee, S.R., Ha, Y.C., Kang, H., Park, Y.G., Nam, K.W. & Kim, S.R. 2013. Morbidity and mortality in Jeju residents over 50-years of age with hip fracture with mean 6-year follow-up: A prospective cohort study. J. Korean Med. Sci. 28(7): 1089-1094.

Liu, D., Genetos, D.C., Shao, Y., Geist, D.J., Li, J., Ke, H.Z., Turner, C.H. & Duncan, R.L. 2008. Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca (2+) and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42(4): 644-652.

Liu, C.G., Luo, Q.X., Ling, T.Y., Mo, Y.Y., Cheng, Z.L., Huang, S.G. & Mo, H. 2013. Effect of erigeron breviscapus on the expression of OPG/RANKL/RANK in osteoblasts and pre osteoclasts in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi 33: 1658-1664.

Liu, X., Jia, H. & Xia, H. 2017. Reduction of intra-articular adhesion by topical application of daidzein following knee surgery in rabbits. Afr. J. Tradit. Complement. Altern. Med. 14: 265-271.

Marrian, G.F. & Haslewood, G.A. 1932. Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares’ urine. Biochem. J. 26: 1227-1232.

Marriott, I. 2004. Osteoblast responses to bacterial pathogens: A previously unappreciated role for bone-forming cells in host defense and disease progression. Immunol. Res. 30(3): 291-308.

Masilamani, M., Wei, J. & Sampson, H.A. 2012. Regulation of the immune response by soybean isoflavones. Immunol. Res. 54: 95-110.

Martin, T.J. & Sims, N.A. 2005. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol. Med. 11(2): 76-81.

Mense, S.M., Hei, T.K., Ganju, R.K. & Bhat, H.K. 2008. Phytoestrogens and breast cancer prevention: Possible mechanisms of action. Environ. Health Perspect. 116(4): 426-433.

Messina, M., McCaskill-Stevens, W. & Lampe, J.W. 2006. Addressing the soy and breast cancer relationship: Review, commentary, and workshop proceedings. J. Natl. Cancer Inst. 98(18): 1275-1284.

Miao, Q., Li, J.G., Miao, S., Hu, N., Zhang, J. & Zhang, S. 2012. The bone-protective effect of genistein in the animal model of bilateral ovariectomy: Roles of phytoestrogens and PTH/ PTHR1 against post-menopausal osteoporosis. Int. J. Mol. Sci. 13: 56-70.

Michel, T., Halabalaki. & Skaltsounis, A.L. 2013. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med. 79(7): 514-532.

Miura, M., Chen, X.D., Allen, M.R., Bi, Y., Gronthos, S., Seo, B.M., Lakhani, S., Flavell, R.A., Feng, X.H., Robey, P.G., Young, M. & Shi, S. 2004. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114: 1704-1713.

Mizuno, A., Amizuka, N., Irie, K., Murakami, A., Fujise, N., Kanno, T., Sato, Y., Nakagawa, N., Yasuda, H., Mochizuki, S., Gomibuchi, T., Yano, K., Shima, N., Washida, N., Tsuda, E., Morinaga, T., Higashio, K. & Ozawa, H. 1998. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 247(3): 610-615.

Moreira, A.C., Silva, A.M., Santos, M.S. & Sardão, V.A. 2014. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J. Steroid Biochem. Mol. Biol. 143: 61-71.

Ohtomo, T., Uehara, M., Peñalvo, J.L., Adlercreutz, H., Katsumata, S.I., Suzuki, K., Takeda, K., Masuyama, R. & Ishimi, Y. 2008. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur. J. Nutr. 47(5): 273-279.

Palacios, V.G., Robinson, L.J., Borysenko, C.W., Lehmann, T., Kalla, S.E. & Blair, H.C. 2005. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 cells by estrogen and phytoestrogens. J. Biol. Chem. 280(14): 13720-13727.

Pandur, P., Maurus, D. & Kuhl, M. 2002. Increasingly complex: New players enter the Wnt signaling network. BioEssays 24(10): 881-884.

Paterni, I., Granchi, C., Katzenellenbogen, J.A. & Minutolo, F. 2014. Estrogen receptors alpha (ERa) and beta (ERß): Subtype-selective ligands and clinical potential. Steroids 90: 13-29.

Rietjen, I.M., Sotoca, A.M., Vervoort, J. & Louisse, J. 2013. Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol. Nutr. Food Res. 57(1): 100-113.

Saika, M., Inoue, D., Kido, S. & Matsumoto, T. 2001. 17 beta-estradiol stimulates expression of osteoprotegerin by a mouse stromal cell line, ST-2, via estrogen receptor-alpha. Endocrinology 142(6): 2205-2212.

Saitoh, S., Sato, T., Harada, H. & Matsuda, T. 2004. Biotransformation of soy isoflavone glycosides in laying hens: Intestinal absorption and preferential accumulation into egg yolk of equol, a more estrogenic metabolite of daidzein. Biochim. Biophys. Acta Gen. Subj. 1674(2): 122-130.

Seeman, E. & Delmas, P.D. 2006. Bone quality-The material and structural basis of bone strength and fragility. N. Engl. J. Med. 354(21): 2250-2261.

Setchell, K.D.R., Brown, N.M. & Lydeking-Olsen, E. 2002. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 132(12): 3577-3584.

Setchell, K.D. 2001. Soy isoflavones-Benefits and risks from nature's selective estrogen receptor modulators (SERMs). J. Am. Coll. Nutr. 20(5): 354S-362S.

Setchell, K.R. & Clerici, C. 2010. Equol: History, chemistry, and formation. J. Nutr. 3: 1355-1362.

Sims, N.A. & Walsh, N.C. 2012. Intercellular cross-talk among bone cells: New factors and pathways. Curr. Osteoporos. Rep. 10(2): 109-117.

Simonet, W.S., Lacey, D.L., Dunstan, C.R., Kelley, M., Chang, M.S., Lüthy, R., Nguyen, H.Q., Wooden, S., Bennett, L., Boone, T., Shimamoto, G., DeRose, M., Elliott, R., Colombero, A., Tan, H.L., Trail, G., Sullivan, J., Davy, E., Bucay, N., Renshaw-Gegg L, Hughes, T.M., Hill, D., Pattison, W., Campbell, P., Sander, S., Van, G., Tarpley, J., Derby, P., Lee, R. & Boyle, W.J. 1997. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89(2): 309-319.

Sliwiński, L., Folwarczna, J., Nowińska, B., Cegieła, U., Pytlik, M., Kaczmarczyk-Sedlak, I., Trzeciak, H. & Trzeciak, H.I. 2009. A comparative study of the effects of genistein, estradiol and raloxifene on the murine skeletal system. Acta Biochim. Pol. 56(2): 261-270.

Smith, M.G., Dunkow, P.& Lang, D.M. 2004. Treatment of osteoporosis: Missed opportunities in the Hospital fracture clinic. Ann. R. Coll. Surg. of Engl. 86(5): 344-346.

Sözen, T., Özışık, L. & Başaran, N.Ç. 2017. An overview and management of osteoporosis. Eur. J. Rheumatol. 4(1): 46-56.

Srivastava, S., Toraldo, G., Weitzmann, M.N., Cenci, S., Ross, F.P. & Pacifici, R. 2001. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J. Biol. Chem. 276(12): 8836-8840.

Stains, J.P. & Civitelli, R. 2005. Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Res. C. Embryo Today 75(1): 72-80.

Streicher, C., Heyny, A., Andrukhova, O., Haigl, B., Slavic, S., Schüler, C., Kollmann, K., Kantner, I., Sexl, V., Kleiter, M., Hofbauer, L.C., Kostenuik, P.J. & Erben, R.G. 2017. Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep. 7(1): 6460.

Strong, A.L., Jiang, Q., Zhang, Q., Zheng, S., Boue, S.M., Elliott, S., Burow, M.E., Bunnell, B.A. & Wang, G. 2014. Design, synthesis, and osteogenic activity of daidzein analogs on human mesenchymal stem cells. ACS Med. Chem. Lett. 5(2): 143-148.

Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J.P. & He, X. 2000. LDL receptor-related proteins in Wnt signal transduction. Nature 407: 530-535.

Taylor, J.A., Richter, C.A., Ruhlen, R.L. & vom Saal, F.S. 2011. Estrogenic environmental chemicals and drugs: Mechanisms for effects on the developing male urogenital system. J. Steroid Biochem. Mol. Biol. 127(1-2): 83-95.

Teitelbaum, S.L. 2007. Osteoclasts: What do they do and how do they do it? Am. J. Pathol. 170(2): 427-435.

Terpos, E. 2003. Soluble receptor activator of nuclear factor B ligand-osteoprotegerin ratio predicts survival in multiple myeloma: Proposal for a novel prognostic index. Blood 102(3): 1064-1069.

Theill, L.E., Boyle, W.J. & Penninger, J.M. 2002. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20: 795-823.

Thirunavukkarasu, K., Halladay, D.L., Miles, R.R., Yang, X., Galvin, R.J., Chandrasekhar, S., Martin, T.J. & Onyia, J.E. 2000. The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J. Biol. Chem. 275(33): 25163-25172.

Thomas, P. & Dong, J. 2006. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: A potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol. 102(1-5): 175-179.

Törmälä, R., Appt, S., Clarkson, T.B., Mueck, A.O., Seeger, H., Mikkola, T.S. & Ylikorkala, O. 2008. Impact of soy supplementation on sex steroids and vascular inflammation markers in postmenopausal women using tibolone: Role of equol production capability. Climacteric 11(5): 409-415.

Tousen, Y., Wolber, F.M., Chua, W.H., Tadaishi, M., Ishimi, Y. & Kruger, M.C. 2014. Effects of daidzein and kiwifruit on bone mineral density and equol production in ovariectomised rats. Int. J. Food Sci. Nutr. 65(3): 360-367.

Tousen, Y., Ezaki, J., Fujii, Y., Ueno, T., Nishimuta, M. & Ishimi, Y. 2011. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: A pilot randomized, placebo-controlled trial. Menopause 18(5): 563-574.

Tsuda, E., Goto, M., Mochizuki, S.I., Yano, K., Kobayashi, F., Morinaga, T. & Higashio, K. 1997. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234(1): 137-142.

Vatanparast, H. & Chilibeck, P.D. 2007. Does the effect of soy phytoestrogens on bone in postmenopausal women depend on the equol-producing phenotype? Nutr. Rev. 65(6): 294-299.

Veeman, M.T., Axelrod, J.D. & Moon, R.T. 2003. A second canon: Functions and mechanisms of β-catenin-independent Wnt signaling. Developmental Cell 5(3): 367-377.

Van Pottelbergh, I., Goemaere, S., Zmierczak, H. & Kaufman, J.M. 2004. Perturbed sex steroid status in men with idiopathic osteoporosis and their sons. J. Clin. Endocrinol. Metab. 89(10): 4949-4953.

Vitale, D.C., Piazza, C., Melilli, B., Drago, F. & Salomone, S. 2013. Isoflavones: Estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38(1): 15-25.

Wade, S.W., Strader, C., Fitzpatrick, L.A., Anthony, M.S. & O’Malley, C.D. 2014. Estimating prevalence of osteoporosis: Examples from industrialized countries. Arch. Osteoporos. 9: 182.

Wang, X., Wu, J., Chiba, H., Umegaki, K., Yamada, K. & Ishimi, Y. 2003. Puerariae radix prevents bone loss in ovariectomized mice. J. Bone Miner. Metab. 21(5): 268-275.

Watkins, A.J., Lucas, E.S., Wilkins, A., Cagampang, F.R. & Fleming, T.P. 2011. Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PLoS ONE 6: e28745.

Watts, N.B. 1999. Postmenopausal osteoporosis. Obstet. Gynecol. Surv. 54(8): 532-538.

Williamson-Hughes, P.S., Flickinger, B.D., Messina, M.J. & Empie, M.W. 2006. Isoflavone supplements containing predominantly genistein reduce hot flash symptoms: A critical review of published studies. Menopause 13(5): 831-839.

Wong, K.H., Li, G.Q., Li, K.M., Razmovski-Naumovski, V. & Chan, K. 2011. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J. Ethnopharmacol. 134(3): 584-607.

Yahaya, M.F., Zainodin, A., Pupathy, R., Min, E.O.H., Bakar, N.H.A., Zamri, N.A., Ismail, H. & Mohd Ramli, E.S. 2018. The effect of palm tocotrienol on surface osteoblast and osteoclast in excess glucocorticoid osteoporotic rat model. Sains Malaysiana 47(11): 2731-2739.

Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. & Suda, T. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95(7): 3597-3602.

Yuan, J.P., Wang, J.H. & Liu, X. 2007. Metabolism of dietary soy isoflavones to equol by human intestinal microflora - Implications for health. Mol. Nutr. Food Res. 51(7): 765-781.

Yoshikata, R., Myint, K.Z.Y. & Ohta, H. 2018. Effects of equol supplement on bone and cardiovascular parameters in middle-aged Japanese women: A prospective observational study. J. Altern. Complement. Med. 24(7): 701-708.

Younes, M.H.N. 2011. Estrogen receptor. Pathol. Lab. Med. 135: 63-66.

Zhang, H.P., Zhao, J.H., Yu, H.X. & Guo, D.X. 2016. Genistein ameliorated endothelial nitric oxidase synthase uncoupling by stimulating sirtuin-1 pathway in ox-LDL- injured HUVECs. Environ. Toxicol. Pharmacol. 42: 118-124.

Zhang, J., Dai, J., Qi, Y., Lin, D.L., Smith, P., Strayhorn, C., Mizokami, A., Fu, Z., Westman, J. & Keller, E.T. 2001. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107(10): 1235-1244.

 

*Pengarang untuk surat-menyurat; email: drsrijit@gmail.com

 

 

 

sebelumnya