Sains
Malaysiana 49(10)(2020): 2335-2344
http://dx.doi.org/10.17576/jsm-2020-4910-01
Effects of Elevated
Temperature on the Tropical Soil Bacterial Diversity
(Kesan Peningkatan
Suhu terhadap Kepelbagaian Bakteria Tanah Tropika)
CHIN LAI MUN1 & CLEMENTE MICHAEL WONG VUI LING1,2*
1Biotechnology Research Institute, Universiti
Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2National Antarctic Research Centre, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
Diserahkan: 25 Oktober 2019/Diterima:
22 April 2020
ABSTRACT
Bacteria
are important biological components of soil that play pivotal roles in
improving soil quality and maintaining a balanced ecosystem. However, global
climate change may have severe impacts on biodiversity and ecosystems including
species loss and extinction of plants and animals, including microbes. Thus, it
is crucial to determine how elevated temperature may alter soil bacterial
diversity and composition. In this study, an in vitro simulated temperature rise experiment was
carried out on soils from three sampling sites, referring to S1, S2, and S3
around Sabah, Malaysia. Soils were incubated at 25 °C (control) and 27 °C (simulated warming) with constant
parameters in a growth chamber up to 16 months. Total DNA was extracted from
microbes in the soil and used for PCR amplification targeting the V3-V4 region
of the 16S rRNA gene. These amplicons were sequenced using the MiSeq platform
(Illumina, USA). Raw DNA sequences were trimmed, merged, and aligned against
the 16S rRNA sequences in the NCBI 16S database. The results showed that the
analyzed soils were mainly dominated by Proteobacteria,
Actinobacteria, Acidobacteria, and Verrucomicrobia. After 16 months of
simulated warming, a net decrease of Proteobacteria, Acidobacteria, and Planctomycetes, and an increase of Actinobacteria and Chloroflexi were observed
for all three soil samples, indicating that these phyla were highly affected by
a temperature rise. At the genus level, Gaiella and Nocardioides exhibited a
net increase while Bradyrhizobium, Mycobacterium, Tepidisphaera, and Paludibaculum demonstrated net decrease after 16 months of simulated warming.
Knowledge on the changes of soil bacterial diversity patterns as a result of
temperature elevation will contribute to select the best intervention strategy
to overcome global warming issue in the future.
Keywords: 16S metagenomic sequencing; growth chamber;
soil bacteria; temperature
ABSTRAK
Bakteria
merupakan komponen biologi penting yang memainkan peranan dalam meningkatkan
kualiti tanah dan mengekalkan keseimbangan ekosistem. Akan tetapi, perubahan
iklim global mungkin akan memberi kesan buruk terhadap kepelbagaian bio dan ekosistem termasuk kehilangan spesies
serta kepupusan haiwan, tumbuhan dan mikrob. Oleh itu, adalah penting untuk
menentukan bagaimana peningkatan suhu akan menyebabkan perubahan kepelbagaian
dan komposisi bakteria dalam tanah. Dalam kajian ini, uji kaji simulasi peningkatan suhu secara in
vitro telah dijalankan ke atas tanah yang
diperoleh dari tiga tapak pensampelan di sekitar Sabah, Malaysia. Tanah
tersebut dieram pada suhu 25 °C (kawalan) dan 27 °C (simulasi) dengan parameter yang sama dalam kebuk pertumbuhan
selama 16 bulan. DNA keseluruhan telah diekstrak daripada mikrob dalam tanah dan digunakan untuk
amplifikasi PCR menyasarkan kawasan V3-V4 pada gen 16 SrRNA. Amplikon tersebut dijujuk dengan menggunakan
platform Miseq (Illumina, USA). Data penjujukan telah dipangkas, digabungkan
dan disejajarkan dengan jujukan 16 SrRNA pada pangkalan data 16S NCBI. Hasil
kajian menunjukkan bahawa sampel tanah didominasi oleh Proteobacteria, Actinobacteria, Acidobacteria dan Verrucomicrobia. Selepas simulasi pemanasan selama 16
bulan, pengurangan bersih bagi Proteobacteria,
Acidobacteria dan Planctomycetesserta peningkatan bagi Actinobacteria dan Chloroflexi dapat diperhatikan untuk ketiga-tiga sampel
tanah. Pada peringkat genus, Gaiella dan Nocardioides menunjukkan peningkatan bersih manakala Bradyrhizobium, Mycobacterium, Tepidisphaera dan Paludibaculum menunjukkan penurunan bersih
selepas 16 bulan. Pengetahuan corak perubahan kepelbagaian bakteria
dalam tanah akibat peningkatan suhu persekitaran akan dapat membantu dalam
strategi intervensi ke atas tanah bagi menangani isu pemanasan global pada masa
hadapan.
Kata kunci:
Bakteria tanah; kebuk pertumbuhan; penjujukan metagenomik 16S; suhu
RUJUKAN
Aislable, J. & Deslippe, J.R.
2013. Soil microbes and their contribution to soil services. In Ecosystem Services in New Zealand-Conditions and Trends, edited by Dymond,
J. Lincoln, New Zealand: Manaaki Whenua Press.
Albuquerque,
L., França, L., Rainey, F.A., Schumann, P., Nobre, M.F. & da Costa, M.S.
2011. Gaiella occulta gen. nov., sp. nov., a novel representative of a
deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Systematic
and Applied Microbiology 34(8): 595-599.
Baker-Austin, C.,
Stockley, L., Rangdale, R. & Martinez-Urtaza, J. 2010. Environmental
occurrence and clinical impact of Vibrio
vulnificus and Vibrio
parahaemolyticus: A European perspective. Environmental Microbiology Reports 2(1): 7-18.
Carlin,
F., Brillard, J., Broussolle, V., Clavel, T., Duport, C., Jobin, M.,
Guinebretière, M., Auger, S., Sorokine, A. & Nugyen-Thé, C. 2010.
Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a
changing environment. Food Research International 43(7): 1885-1894.
Classen, A.T., Sundqvist,
M.K., Henning, J.A., Newman, G.S., Moore, J.A., Cregger, M.A., Moorhead, L.C.
& Patterson, C.M. 2015. Direct and indirect effects of climate change on
soil microbial and soil microbial‐plant interactions: What lies ahead? Ecosphere 6(8): 1-21.
Colwell, R.R. 1996. Global
climate and infectious disease: The cholera paradigm. Science 274(5295):
2025-2031.
Hayat,
R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. 2010. Soil beneficial bacteria and their
role in plant growth promotion: A review. Annals Microbiology 60(4): 579-598.
Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington,
E.M. 1997. Analysis of actinomycete communities by specific amplification of
genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied
and Environmental Microbiology 63(8): 3233-3241.
Huson, D.H., Mitra, S., Weber, N., Ruscheweyh, H.J.
& Schuster, S.C. 2011. Integrative analysis of environmental sequences
using MEGAN 4. Genome Research 21(9): 1552-1560.
IPCC. 2018. Global
Warming of 1.5°C. In An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, edited by Masson-Delmotte, V., Zhai, P., Pörtner, H.O.,
Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C.,
Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I.,
Lonnoy, E., Maycock, T., Tignor, M. & Waterfield, T. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf.
Jeanbille,
M., Buée, M., Bach, C., Cébron, A., Frey-Klett, P., Turpault, M.P. & Uroz,
S. 2016. Soil parameters drive the structure, diversity and metabolic
potentials of the bacterial communities across temperate beech forest soil
sequences. Microbial Ecology 71(2): 482-493.
Jenkins, S.N., Waite, I.S., Blackburn, A., Husband, R.,
Rushton, S.P., Manning, D.C. & O’Donnell, A.G. 2009. Actinobacterial
community dynamics in long term managed grasslands. Antonie Van
Leeuwenhoek 95(4): 319-334.
Kerfahi, D., Tripathi, B.M., Dong,
K., Go, R. & Adams, J.M. 2016. Rainforest conversion to rubber plantation
may not result in lower soil diversity of bacteria, fungi, and nematodes. Microbial
Ecology 72(2): 359-371.
Kim,
M., Kim, W.S., Tripathi, B.M. & Adams, J. 2014. Distinct bacterial
communities dominate tropical and temperate zone leaf litter. Microbial
Ecology 67(4): 837-848.
Klindworth,
A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. & Glöckner,
F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for
classical and next generation sequencing-based diversity studies. Nucleic
Acids Research 41(1): 1-11.
Lugtenberg, B. &
Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annual Review
of Microbiology 63: 541-556.
Mateos-Rivera, A., Yde, J.C., Wilson, B., Finster, K.W.,
Reigstad, L.J. & Øvreås, L. 2016. The effect of temperature change on the
microbial diversity and community structure along the chronosequence of the
sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS
Microbiology Ecology 92(4): 1-13.
NOAA. 2020.
National Centers for Environmental Information, State of the Climate: Global
Climate Report for Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913. Accessed on 18
February 2020.
NOAA/ESRL.
2010. Use of NOAA/ESRL data. Earth System Research Laboratory, National Oceanic
and Atmospheric Administration, United States. Department of Commerce, Boulder,
Colorado. United States of America.
Novello, G., Gamalero, E., Bona, E., Boatti, L., Mignone, F.,
Massa, N., Cesaro, P., Lingua, G. & Berta, G. 2017. The rhizosphere
bacterial microbiota of Vitis vinifera cv. pinot noir in an integrated
pest management vineyard. Frontiers in Microbiology 8: 1528.
Pearce, D.A., Hodgson, D.A., Thorne, M.A., Burns, G. &
Cockell, C.S. 2013. Preliminary analysis of life within a former subglacial
lake sediment in Antarctica. Diversity 5(3): 680-702.
Rinnan, R., Michelsen, A., Bååth, E. &
Jonasson, S. 2007. Fifteen years of climate change manipulations alter soil
microbial communities in a subarctic heath ecosystem. Global Change Biology 13(1): 28-39.
Ryu, C.M., Farag, M.A., Hu, C.H.,
Reddy, M.S., Wei, H.X., Paré, P.W. & Kloepper, J.W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proceedings
of the National Academy of Sciences of the United States of America 100(8):
4927-4932.
Schloss, P.D. & Handelsman, J. 2005. Metagenomics for
studying unculturable microorganisms: Cutting the Gordian
knot. Genome
Biology 6(8): 229.
Schuette, U.M., Abdo, Z., Foster, J., Ravel, J., Bunge, J.,
Solheim, B. & Forney, L.J. 2010. Bacterial diversity in a glacier foreland
of the high Arctic. Molecular Ecology 19: 54-66.
Schuur, E.A.G., Bockheim, J., Canadell, J.G.,
Euskirchen, E., Field, C.B., Goryachkin, S.V., Hagemann, S., Kuhry, P.,
Lafleur, P.M., Lee, H., Mazhitova, G., Nelson, F.E., Rinke, A., Romanovsky,
V.E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J.G. & Zimov,
S.A. 2008. Vulnerability of permafrost carbon to climate change: Implications
for the global carbon cycle. Bioscience 58(8): 701-714.
Shao, J., Li, S., Zhang, N., Cui, X., Zhou, X., Zhang,
G., Shen, Q. & Zhang, R. 2015. Analysis and cloning of the synthetic
pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus
amyloliquefaciens SQR9. Microbial Cell Factories 14(1):
130.
Sheik, C.S., Beasley, W.H., Elshahed, M.S., Zhou, X., Luo, Y.
& Krumholz, L.R. 2011. Effect of warming and drought on grassland microbial
communities. International
Society for Microbial Ecology ISEME 5(10):
1692.
Skidmore, M., Anderson, S.P., Sharp, M., Foght, J. &
Lanoil, B.D. 2005. Comparison of microbial community compositions of two
subglacial environments reveals a possible role for microbes in chemical
weathering processes. Applied and Environmental Microbiology 71(11):
6986-6997.
Smeds, L. & Künstner, A. 2011. ConDeTri - A content dependent read trimmer for illumina data. PLoS
ONE 6(10): e26314.
Thwaite, J.E. & Atkins, H.S. 2012. Bacillus: Anthrax; food poisoning. In Medical Microbiology (18th edition) - A Guide to Microbial
Infection: Pathogenesis,
Immunity, Laboratory Investigation and Control, edited by Greenwood, D., Slack, R., Michaelm, B. & Irving, W. London:
Churchill Livingstone Elsevier. pp. 237-244.
Torsvik, V., Øvreås, L. & Thingstad, T.F. 2002.
Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science 296(5570): 1064-1066.
Trivedi, P.,
Delgado-Baquerizo, M., Anderson, I.C. & Singh, B.K. 2016. Response of soil
properties and microbial communities to agriculture: Implications
for primary productivity and soil health indicators. Frontiers in Plant
Science 7: 990.
Verma, J.P., Yadav, J.,
Tiwari, K.N. & Lavakush, S.V. 2010. Impact of plant growth promoting
rhizobacteria on crop production. International Journal of Agricultural
Research 5(11): 954-983.
Wang, N.F., Zhang, T., Zhang, F., Wang, E.T., He,
J.F., Ding, H., Zhang, B.T., Liu, J., Ran, X.B. & Zang, J.Y. 2015.
Diversity and structure of soil bacterial communities in the Fildes Region
(maritime Antarctica) as revealed by 454 pyrosequencing. Frontiers in
Microbiology 6: 1188.
Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B.,
Coutinho, P.M., Wu, M., Xie, G., Haft, D.H., Sait, M.,
Badger, J. &
Barabote, R.D. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these
microorganisms in soils. Applied and Environmental Microbiology 75(7):
2046-2056.
Yergeau, E., Bokhorst, S., Kang, S., Zhou, J., Greer,
C.W., Aerts, R. & Kowalchuk, G.A. 2012. Shifts in soil microorganisms in
response to warming are consistent across a range of Antarctic environments. International Society for Microbial
Ecology ISEME 6(3): 692-702.
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A.
2014. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics 30(5): 614-620.
Zhang, W., Parker,
K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. 2005. Soil microbial
responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology 11(2): 266-277.
Zhang, X., Zhang, G., Chen, Q. & Han, X. 2013. Soil
bacterial communities respond to climate changes in a temperate steppe. PLoS ONE 8(11): e78616.
Zumsteg, A., Bååth, E., Stierli, B., Zeyer, J. & Frey, B.
2013. Bacterial and fungal community responses to reciprocal soil transfer
along a temperature and soil moisture gradient in a glacier forefield. Soil
Biology Biochemistry 61: 121-132.
*Pengarang untuk
surat-menyurat; email: michaelw@ums.edu.my
|