Sains Malaysiana 49(10)(2020): 2513-2525
http://dx.doi.org/10.17576/jsm-2020-4910-17
Formulation of Metformin-Loaded
Alginate Microspheres by Ionotropic Gelation-Aerosolization Technique
(Formulasi Mikrosfera Alginat Muatan-Metformin oleh Pengegelan Ionotropik- Kaedah Aerosol)
DEWI MELANI HARIYADI1*, YASHWANT
PATHAK1,2, ESTI HENDRADI1, TRISTIANA ERAWATI1,
IZZATUL HIDAYAH1 & ELIZABETH SANTOS1
1Pharmaceutics
Department, Faculty of Pharmacy, Universitas Airlangga, 60286, Indonesia
2College of Pharmacy, University of South Florida, 33612,
United States of America
Diserahkan: 26 Disember 2019/Diterima: 18 April 2020
ABSTRACT
Metformin hydrochloric acid (HCl)-loaded alginate microspheres prepared using aerosolization method were subsequently evaluated for their physico-chemical characteristics in terms of particle size, morphology, drug loading,
entrapment efficiency, yield and in vitro release. A two
factorial Design of Experiment (DoE) was used to study the influence of polymer
alginate and cross-linker calcium chloride (CaCl2) concentrations
on microparticle characteristics. The results indicated that all microspheres
were spherical in shape, while their particle size was less than 5 µm, although this increased with the
intensification of alginate and CaCl2 concentrations. Encapsulation efficiency, loading, and yield were all
enhanced by increasing alginate concentration and, conversely, decreasing CaCl2 concentration. The highest encapsulation
efficiency, loading, and yield were 40, 31, and 73%, respectively, produced by a formula containing 1.75%
alginate and 3% CaCl2. The drug release of Metformin-loaded microparticlesin HCl pH 1.2 ranged from
22 to 28% during a two-hour
period, while
further drug release of PBS pH
7.4
increased from 67 to 95% over ten
hours. The total amount of drug released during a 12-h period increased by reducing alginate
concentration. Furthermore, a kinetic study of
the dissolution data confirmed the prevalence of a diffusion-controlled
mechanism or Higuchi pattern of drug release.
Keywords: Aerosolization; alginate microspheres; design of
experiment; metformin
ABSTRAK
Mikrosfera alginat muatan-metformin asid hidroklorik (HCl) yang disediakan menggunakan kaedah aerosol telah dinilai untuk ciri fizikal-kimia berdasarkan saiz zarah, morfologi, muatan ubat, kecekapan pemerangkapan, kadar hasil dan pelepasanin vitro. Dua reka bentuk uji kaji (DoE) faktoran digunakan untuk mengkaji pengaruh alginat polimer dan kepekatan penghubung silang kalsium klorida (CaCl2) pada ciri mikrozarah. Keputusan kajian menunjukkan bahawa kesemua mikrosfera mempunyai bentuk sfera, manakala saiz zarah kurang daripada 5 µm, walaupun ia meningkat dengan pengamatan alginat dan kepekatan CaCl2. Kecekapan pengapsulan, muatan, kadar hasil kesemuanya dipertingkat dengan peningkatan kepekatan alginat dan sebaliknya penurunan kepekatan CaCl2. Kecekapan pengkapsulan, muatan dan kadar hasil tertinggi masing-masing adalah 40,31 dan 73%, dihasilkan dengan formula yang mengandungi alginat 1.75% dan CaCl2 3%. Perlepasan ubat mikrozarah muatan-metformin dalam HCl pH 1.2 berjulat antara 22 sehingga 28% ketika tempoh dua jam, manakala perlepasan ubat daripada PBS pH 7.4 meningkat daripada 67 sehingga 95% dalam masa 10 jam. Jumlah keseluruhan perlepasan ubat ketika tempoh 12 jam meningkat dengan penurunan kepekatan alginat. Selain itu, kajian kinetik berkenaan data perlarutan memperakui prevalens mekanisme terkawal-penyerapan atau pola Higuchi perlepasan ubat.
Kata kunci:
Aerosol; metformin; mikrosfera alginat; reka bentuk uji kaji
RUJUKAN
Balasubramaniam, J., Rao, V.U., Vasudha,
M., Babu, J. & Rajinikanth,
P.S. 2007. Sodium alginate microspheres
of metformin HCl: Formulation and in vitro evaluation. Current Drug Delivery4(3): 294-256.
Banerjee, A.,
Qi, J., Gogoi, R., Wong, J. & Mitragotri,
S. 2016. Role of nanoparticle size, shape and surface chemistry in oral drug
delivery. Journal of Controlled Release 238: 176-185.
Choudhury,
P.K. & Kar, M. 2009. Controlled release metformin
hydrochloride microspheres of ethyl cellulose prepared by different methods and
study on the polymer affected parameters. Journal of Microencapsulation 26(1): 46-53.
Dashora, A. & Jain, C.P. 2009. Development and characterization
of pectinprednisolone microspheres for colon targeted
delivery. International Journal of ChemTech Research 1(3): 751-757.
De, S.,
Miller, D.W. & Robinson, D.H. 2015. Effect of particle size of nanospheres and microspheres on the cellular-association
and cytotoxicity of paclitaxel in 4T1 cells. Pharmaceutical
Research 22: 766-775.
Déat-Lainé, E., Hoffart, V., Garrait, G. & Beyssac, E.
2013a. Whey protein and alginate hydrogel microparticles for insulin intestinal absorption: Evaluation of permeability enhancement
properties on Caco-2 cells. Int. J. Pharm. 453(2): 336-342.
Déat-Lainé, E., Hoffart, V., Garrait, G., Jarrige, J.F., Cardot, J.M., Subirade, M. & Beyssac, E. 2013b. Efficacy of mucoadhesive hydrogel microparticles of whey protein and alginate for oral insulin delivery. Pharmaceutical
Research 30(3): 721-734.
Ghodake, J.D., Vidhate, J.S., Shinde, D.A. & Kadam, A.N.
2010. Formulation and evaluation of floating microsphere containing
anti-diabetic (metformin hydrochloride) drug. International Journal of PharmTech Research 2(1): 378-384.
Hariyadi, D.M., Purwanti, T., Kusumawati, I., Nirmala, R.N. & Maindra,
H.M.C. 2015. Physical characterization and in vivo study of ovalbumin
encapsulated in alginate microspheres. International Journal of Drug
Delivery Technology 5(2): 48-53.
Hasan, A.A., Madkor, H. & Wageh, S. 2012.
Formulation and evaluation of metformin hydrochloride beads by ionotropic
gelation technique. Journal of Pharmaceutical and Scientific Innovation 1(1): 75-78.
Hébrard, G., Hoffart, V., Cardot, J.M., Subirade, M. & Beyssac, E. 2013. Development and characterization of coated-microparticles based on whey protein/alginate using the encapsulator device. Drug Development and Industrial Pharmacy 39(1):
128-137.
Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J.M., Alric, M. & Subirade, M. 2010. Coated whey protein/alginate microparticles as oral controlled delivery systems for
probiotic yeast. Journal of Microencapsulation 27(4):
292-302.
Jia, L. 2005. Nanoparticle formulation increases oral
bioavailability of poorly soluble drugs: Approaches experimental evidences and
theory. Current Nanoscience 1(3): 237-243.
Joshi, S.,
Patel, P., Lin, S. & Madan, P.L. 2012. Development of cross-linked alginate
spheres by ionotropic gelation tecnique for
controlled release of naproxen orally. Asian Journal of Pharmacetical Science 7(1): 134-142.
Manjanna, K.M., Kumar, T.P. & Shivakumar,
B. 2010. Calcium alginate cross-linked polymeric microbeads for oral sustained
drug delivery in arthritis. Drug Discoveries & Therapeutics 4(2):
109-122.
Morishita, M., Goto, T., Peppas, N.A., Joseph, J.I., Torjman,
M.C., Munsick, C., Nakamura, K., Yamagata, T., Takayama, K. & Lowman, A.M. 2004. Mucosal insulin
delivery systems based on complexation polymer hydrogels: Effect of particle
size on insulin enteral absorption. Journal of Controlled Release 97(1):
115-124.
Nagpal, M., Maheshwari, D.K., Rakha, P., Dureja, H., Goyal, S. & Dhingra, G. 2012.
Formulation development and evaluation of alginate microspheres of ibuprofen. Journal
of Young Pharmacists 4(1): 13-16.
Nayak, A.K., Pal, D., Pradhan, J. & Hasnain,
M.S. 2013. Fenugreek seed mucilage-alginate mucoadhesive beads of Metformin HCl: Design, optimization and
evaluation. International Journal of Biological Macromolecules 54:
144-154.
Nethaji, R., Narayanan, A., Palanivelu,
M., Surendiran, N.S. & Ganesan,
B. 2016. Formulation and evaluation of metformin hydrochloride loaded mucoadhesive microspheres. International Journal of
Pharmaceutical, Chemical and Biological Sciences 6(2): 124-132.
Pan, Y.,
Zheng, J.M., Zhao, H.Y., Li, Y.J., Xu, H. & Wei, G. 2002. Relationship between drug effects and
particle size of insulin-loaded bioadhesive microspheres. Acta Pharmacologica Sinica 23(11):
1051-1056.
Pawar, A., Gadhe, A., Venkatachalam, P., Sher, P. & Mahadik,
K. 2008. Effect of core and surface cross-linking on the entrapment of
metronidazole in pectin beads. Acta Pharmaceutica 58: 75-85.
Rani, B.S.,
Reddy, A.B., Sai, E.L., Lakshmi, K. & Chandrika, M.V. 2012. Mucoadhesive microbeads of Metformin HCl:
A promising sustained drug delivery system. International Research
Journal of Pharmacy 3(5): 263-274.
Reineke, J.J., Cho, D.Y., Dingle, Y.T., Morello, A.P., Jacob,
J., Thanos, C.G. & Mathiowitz,
E. 2013. Unique insights into the intestinal absorption, transit, and
subsequent biodistribution of polymer-derived
microspheres. Applied Biological Sciences 110 (34): 13803-13808.
Rijal, M.A.S., Mikail, A. &
Sari, R. 2010. Pengaruh pH larutan tripolifosfat terhadap karakteristik fisik serta profil pelepasan mikropartikel teofilin-chitosan. Majalah Farmasi Airlangga 8(2): 28-33.
Rizvi, S.A.
& Saleh, A.M. 2018. Applications of nanoparticle systems in drug delivery
technology. Saudi Pharmaceutical Journal 6(1): 64-70.
Singh, A., Maiti, A. & Mittal, A. 2014. Formulation evaluation of
sustained release floating beads of Metformin Hydrochloride using Sodium
Alginate. International Journal of Pharma Professional Research 5(1):
953-957.
Suksamran, T., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Ruktanonchai, U. & Supaphol,
P. 2009. Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques
for oral delivery of protein. Journal of Microencapsulation 26(7):
563-570.
Venkateswara Rao, T., Bhadramma, N., Raghukiran Cvs, & Madubabu, K. 2013. Design and development of metformin
hydrochloride trilayered sustained release tablets. Indian
Journal of Research in Pharmacy and Biotechnology November - December 2013:
893-897. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.429.2987.
*Pengarang untuk surat-menyurat;
email: dewi-m-h@ff.unair.ac.id
|