Sains Malaysiana 49(10)(2020): 2573-2585

http://dx.doi.org/10.17576/jsm-2020-4910-23

 

Analisis Penskalaan bagi Kejadian Hujan Ekstrim di Semenanjung Malaysia

(Scaling Analysis for Extreme Rainfall Events in Peninsular Malaysia)

 

WAN ZAWIAH WAN ZIN*, ABDUL AZIZ JEMAIN, MARINA ZAHARI & KAMARULZAMAN IBRAHIM

 

Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 19 Julai 2018/Diterima: 16 April 2020

 

ABSTRAK

Maklumat mengenai kehujanan ekstrim dalam skala masa berbeza diperlukan dalam pembinaan lengkuk keamatan-tempoh-kekerapan (IDF). IDF menjadi rujukan utama dalam pembinaan infrastruktur berkaitan hujan seperti sistem perparitan dan empangan. Seringkali, agak sukar untuk mendapatkan data dalam pelbagai skala seperti per minit, per jam dan per hari. Justeru, kajian ini menggunakan konsep penskalaan yang mengambil kira sifat kebersandaran antara data hujan ekstrim pada sub skala yang berbeza dalam mengkaji ciri-ciri hujan ekstrim. Dalam kajian ini, data hujan maksimum dalam tempoh sejam sehingga 48 jam dari tahun 1970-2008 di 43 buah stesen cerapan hujan di Semenanjung Malaysia telah diuji. Penentuan jenis penskalaan yang sesuai; sama ada penskalaan ringkas atau pelbagai diuji berdasarkan teori skala tak varians. Hasil mendapati bahawa 41 stesen kajian memenuhi syarat penskalaan ringkas dan seterusnya, faktor penskalaan eksponen bagi setiap stesen telah ditentukan. Ini diikuti dengan pemadanan taburan ekstrim yang paling sesuai dengan data kajian bagi setiap stesen memandangkan konsep pembangunan IDF berasaskan taburan statistik. Lima taburan ekstrim iaitu taburan Ekstrim Teritlak (GEV), Logistik Teritlak (GLO), Gumbel, Pareto Teritlak (GPA) dan Pearson 3-Parameter (P3) telah dipadankan kepada data hujan maksimum harian dan hasil mendapati padanan data dengan GEV dan GLO di kebanyakan stesen. Berdasarkan maklumat taburan terbaik, nilai-nilai ulangan dihitung untuk pelbagai skala masa dengan menggunakan maklumat daripada hanya satu skala masa sahaja. Hasil kajian ini ternyata membolehkan pengurusan data yang lebih cekap dalam pembangunan IDF kerana data daripada hanya satu skala masa sahaja sudah mencukupi untuk menganggar nilai pada skala masa yang berlainan.

 

Kata kunci: IDF; konsep penskalaan; lengkung keamatan-tempoh-kekerapan; taburan nilai ekstrim

 

ABSTRACT

Information on extreme rainfall at various time scales is needed in the construction of the Intensity-Duration-Frequency (IDF) curve. Thus, the concept of scaling which takes into account of the dependency property of extreme rainfall data at various time scales in studying the characteristics of extreme rainfall is investigated in this study. Maximum rainfall data in the scales of one-hour until 48-hour for the years 1970 to 2008 at 43 rain-gauge stations were analyzed. The determination of the suitable type of scaling, either the simple scaling or multi-scaling, was tested based on the scale-invariance property. The result shows that 41 stations satisfied the simple scaling property and the scaling exponent for each station was determined. IDF concept requires data to be fitted by a suitable statistical distribution, thus, five types of extreme distributions, namely the Generalised Extreme Values (GEV), Generalised Logistic (GLO), Gumbel, Generalised Pareto (GPA) and Pearson 3-Parameter (P3) were fitted to the maximum daily rainfall data and the results showed that most stations followed the GEV and GLO. Subsequently, based on the best-fitted distribution for each station and the estimated scaling factor, the return values for various time scales at each station can be calculated using information from only one time scale. The results of this study will enable the efficient management of data in the development of IDF as it only requires data from one time scale to estimate values at various other time scales.

 

Keywords: Extreme value distribution; intensity-duration-frequency curve; IDF; scaling concept

 

RUJUKAN

Agbazo, M., Koton’Gobi, G., Kounouhewa, B., Alamou, E. & Afouda, A. 2016. Estimation of IDF curves of extreme rainfall by simple scaling in Northern Oueme Valley, Benin Republic (West Africa). Earth Sciences Research Journal 20(1): D1-D7.

Bara, M., Gaal, L., Kohnova, S., Szolgat, J. & Hlavcova, K. 2010. On the use of the simple scaling of heavy rainfall in a regional estimation of IDF curves in Slovakia. Journal of Hydrology and Hydromechanics 58(1): 49-63.

Blöschl, G. & Sivapalan, M. 1995. Scale issues in hydrological modelling: A review. Hydrological Processes 9(3-4): 251-290.

Bougadis, J. & Adamowski, K. 2006. Scaling model of rainfall intensity-duration-frequency relationship. Hydrological Processes 20: 3747-3757.

Burlando, P. & Rosso, R. 1996. Scaling and multi-scaling models of depth-duration-frequency curves for storm precipitation. Journal of Hydrology 187(1/2): 45-64.

Ceresetti, D., Molinié, G. & Creutin, J.D. 2010. Scaling properties of heavy rainfall at short duration: A regional analysis. Water Resources Research 46(9): 1-12.

De Michele, C., Kottegoda, N.T. & Rosso, R. 2002. IDAF (Intensity-duration-area frequency) curves of extreme storm rainfall: A scaling approach. Water, Science & Technology 45(2): 83-90.

Deni, S.M., Jamaludin, S., Zin, W.Z.W & Jemain, A.A. 2009. Trends of wet spells over Peninsular Malaysia during monsoon seasons. Sains Malaysiana 38(2): 133-142.

Dubrulle, B., Graner, F. & Sornette, D. 1997. Scale Invariance and Beyond, EDP Sciences, Les Houches Workshop, Les Ulis, France, 10-14 March.

Eli, A., Shaffie, M. & Zin, W.Z.W. 2012. Preliminary study on bayesian extreme rainfall analysis: A case study of Alor Setar, Kedah, Malaysia. Sains Malaysiana 41(11): 1403-1410.

Ellouze, M. & Abida, H. 2008. Regional flood frequency analysis in Tunisia: Identification of regional distributions. Water Resources Management 22(8): 943-957.

Gupta, V.K. & Waymire, E. 1990. Multiscaling properties of spatial and river flow distributions. Journal of Geophysical Research: Atmospheres 95(D3): 1999-2009.

Hamidon, N., Harun, S., Sunar, N.M., Hamid, N.H.A., Muhamad, M.S., Harun, H., Ali, R., Awang, M., Rahman, M.A.A., Ahmad, F., Musa, K., Yusof, F.M. & Mustafa, M.S.S. 2019. Prediction of future climate change for rainfall in the upper Kurau River Basin, Perak using statistical downscaling model (SDSM). Civil Engineering and Architecture 7(6A): 33-42.

Hanawi, S.A., Zin, W.Z.W., Jemain, A.A & Ahmad, R. 2011. Fenomena kehujanan di Semenanjung Malaysia berdasarkan Indeks Kerpasan Piawai. Sains Malaysiana 40(11): 1277-1284.

Hassan, Z. & Harun, S. 2012. Application of statistical downscaling model for long lead rainfall prediction in Kurau River catchment of Malaysia. Malaysian Journal of Civil Engineering 24(1): 1-12.

Hassan, Z., Mansor, M.F.M. & Kamarudzaman, A.N. 2019. Rainfall projection corresponding to climate scenarios based on statistical down-scaling model over Perlis, Malaysia. Journal of Engineering Research and Education 11: 9-14.

Hosking, J.R.M. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society. Series (B) 52(1): 105-124.

Langousis, A., Carsteanu, A.A. & Deidda, R. 2013. A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stochastic Environmental Research and Risk Assessment 27: 1525-1531.

Lovejoy, S. & Schertzer, D. 1985. Generalized scale invariance in the atmosphere and fractal models of rain. Water Resources Research 21(8): 1233-1250.

Mahmud, M.R., Hashim, M., Matsuyama, H., Numata, S. & Hosaka, T. 2018. Spatial downscaling of satellite precipitation data in humid tropics using a site-specific seasonal coefficient. Water 10(4): 409.

Menabde, M., Seed, A. & Pegram, G. 1999. A simple scaling model for extreme rainfall. Water Resources Research 35(1): 335-339.

Noor, M. & Ismail, T. 2018. Downscaling of daily average rainfall of Kota Bharu Kelantan, Malaysia. Malaysian Journal of Civil Engineering 30(1): 13-22.

Omotosho, T.V., Mandeep, J.S., Abdullah, M. & Adediji, A.T. 2013. Distribution of one-minute rain rate in Malaysia derived from TRMM satellite data. Annals of Geophysics 31(11): 2013-2022.

Rahman, M.M. 2015. Development of rainfall intensity-duration-frequency relationships from daily rainfall data for the major cities in Bangladesh based on scaling properties. International Journal for Scientific Research & Development 3(8): 627-631.

Rana, A., Bengtsson, L., Olsson, J. & Jothiprakash, V. 2013. Development of IDF-curves for tropical India by random cascade modeling. Hydrology and Earth System Sciences Discussions 10(4): 4709-4738.

Rodriguez-Iturbe, I., Gupta, V.K. & Waymire, E. 1984. Scale considerations in the modeling of temporal rainfall. Water Resources Research 20(11): 1611-1619.

Sivapalan, M. & Blöschl, G. 1998. Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves. Journal of Hydrology 204(1-4): 150-167.

Soo, E.Z.X., Jaafar, W.Z.W., Lai, S.H., Othman, F., Elshafie, A., Islam, T., Srivastava, P. & Hadi, H.S.O. 2020. Evaluation of bias-adjusted satellite precipitation estimations for extreme flood events in Langat river basin, Malaysia. Hydrology Research 51(1): 105-126.

Syafrina, A.H., Zalina, M.D. & Juneng, L. 2015. Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theoretical and Applied Climatology 120(1-2): 259-285.

Veneziano, D. & Langousis, A. 2010. Scaling and fractals in hydrology. In Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting, edited by Sivakumar, B. & Berndtsson, R.  Singapore: World Scientific Publishing Company. pp. 107-243.

Veneziano, D. & Furcolo, P. 2002. Multifractality of rainfall and scaling of intensity-duration-frequency curves. Water Resources Research 38(12): 42-1.

Vogel, R.M. & Fennessey, N.M. 1993. L-moment diagrams should replace product moment diagrams. Water Resources Research 29(6): 1745-1752.

Westra, S., Fowler, H.J., Evans, J.P., Alexander, L.V., Berg, P., Johnson, F., Kendon, E.J., Lenderink, G. & Roberts, N.M. 2014. Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics 52(3): 522-555.

Yu, P.S, Yang, T.C. & Lin, C.S. 2004. Regional rainfall intensity formulas based on scaling property of rainfall. Journal of Hydrology 295(1): 108-123.

Zin, W.Z.W., Jamaludin, S.S.S., Deni, S.M. & Jemain, A.A. 2010. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005. Theoretical and Applied Climatology 99(3-4): 303-314.

Zin, W.Z.W., Jemain, A.A., Ibrahim, K., Jamaludin, S. & Deni, S.M. 2009. A comparative study of extreme rainfall in Peninsular Malaysia: With reference to partial duration and annual extreme series. Sains Malaysiana 38: 751-760.

 

*Pengarang untuk surat-menyurat; email: w_zawiah@ukm.edu.my

 

   

 

sebelumnya