Sains Malaysiana 49(10)(2020): 2599-2608
http://dx.doi.org/10.17576/jsm-2020-4910-25
Experimental and Numerical Investigation of Fluid
Flow and Heat
Transfer in
Circular Micro-Channel
(Penyelidikan Uji Kaji dan Berangka bagi Aliran
Bendalir dan Pemindahan Haba dalam Mikro-Saluran Membulat)
ABDULMAJEED ALMANEEA*
Department of Mechanical and Industrial
Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952,
Saudi Arabia
Diserahkan: 28 Oktober 2019/Diterima: 1 Mei 2020
ABSTRACT
Nowadays, there is a large demand for many electronic
devices such as the laptop, and cell phone. The heat generated by such
electronic component increases due to continuous functioning. Implementing
microchannel could be a good solution despite the heat from microminiature
refrigerators, microelectronics, micro heat pipe spreader, fuel processing
biomedical, and aerospace. Therefore, several investigations have been done to
improve the performance of such continuous operating electronic devices by
dissipating heat with the use of microchannels. In this study, an experimental
and numerical investigation is done for the circular microchannel having the
hydraulic diameter of 253 µm and 63 mm in length under the condition of
constant wall temperature by submerging the microchannels in the oil at
constant temperature and water is forced to pass through total 5 microchannels.
Experimental conducted for various flow rates shows that the microchannel has a
significant impact on the heat transfer rate for the considered flow rate.
Numerical results through COMSOL 5.1 software show good agreement with the
experimental results. It is observed that the heat transfer coefficient
increases with the Reynolds number whereas friction factor decreases with
Reynolds number. Based on numerical and experimental results, empirical
correlations for friction factor and Nusselt number are suggested to provides a
reasonable estimate of heat transfer in the microchannel.
Keywords: Friction factor; heat transfer;
microchannels; Nusselt number; Reynolds number
ABSTRAK
Pada masa ini terdapat banyak permintaan barang peranti elektronik seperti
komputer riba dan telefon bimbit. Haba yang dihasilkan oleh komponen elektronik
akan meningkat dengan penggunaan secara berterusan. Penggunaan mikrosaluran
boleh menjadi penyelesaian yang baik di sebalik haba yang terhasil daripada
peti sejuk mikro, mikroelektronik, penyebar paip haba mikro, bioperubatan
pemprosesan bahan bakar dan aeroangkasa. Oleh itu, beberapa penyelidikan telah
dilakukan untuk meningkatkan prestasi peranti elektronik yang beroperasi secara
berterusan melalui pembuangan haba dengan penggunaan mikrosaluran. Dalam kajian
ini, penyelidikan secara uji kaji dan berangka telah dijalankan untuk
mikrosaluran bulat yang berdiameter 253 µm dan panjang 63 mm di bawah keadaan
suhu dinding tetap dengan merendam mikrosaluran dalam minyak pada suhu tetap
dan air dipaksa melalui keseluruhan 5 mikrosaluran secara keseluruhan. Uji kaji
dijalankan dalam kadar aliran yang berbeza dan ia menunjukkan bahawa mikrosaluran
memberi kesan ketara terhadap kadar pemindahan haba untuk kadar aliran yang terpilih. Keputusan berangka menggunakan perisian COMSOL 5.1 menunjukkan
perbandingan yang baik dengan keputusan uji kaji. Pemerhatian kajian
menunjukkan bahawa pekali pemindahan haba meningkat dengan nombor Reynolds
manakala faktor geseran menurun dengan nombor Reynolds. Berdasarkan keputusan
berangka dan uji kaji, korelasi empirik untuk faktor geseran dan nombor Nusselt
dapat menyarankan anggaran yang bersesuaian dengan pemindahan haba dalam
saluran mikro.
Kata kunci: Faktor geseran; nombor Nusselt; nombor Reynolds; pemindahan
haba; saluran mikro
RUJUKAN
Ababaei, A., Arani, A.A. & Aghaei, A. 2017.
Numerical investigation of forced convection of nanofluid flow in
microchannels: Effect of adding micromixer. Journal of Applied Fluid
Mechanics 10(6): 1759-1772.
Abdollahi, A., Mohammed, H.A., Vanaki, S.M.
& Sharma, R.N. 2018. Numerical investigation of fluid flow and heat transfer
of nanofluids in microchannel with longitudinal fins. Ain Shams Engineering
Journal 9(4): 3411-3418.
Adams, T.M., Dowling, M.F., Abdel-Khalik, S.I.
& Jeter, S.M. 1999. Applicability of traditional turbulent single-phase
forced convection correlations to non-circular microchannels. International
Journal of Heat and Mass Transfer 42: 4411-4415.
Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M.
& Qureshi, Z.H. 1998. An experimental investigation of single-phase forced
convection in microchannels. International Journal of Heat and Mass Transfer 41(6-7): 851-857.
Ahmed, M.A., Yusoff, M.Z., Ng, K.C. &
Shuaib, N.H. 2015. Numerical and experimental investigations on the heat
transfer enhancement in corrugated channels using SiO2-water
nanofluid. Case Studies in Thermal Engineering 6: 77-92.
Al-Zaidi, A.H., Mahmoud, M.M. & Karayiannis,
T.G. 2019. Flow boiling of HFE-7100 in microchannels: Experimental study and
comparison with correlations. International Journal of Heat and Mass
Transfer 140: 100-128.
Anbumeenakshi, C., Sunndhar, P.M., Sundaram,
P.K. & Thansekhar, M.R. 2018. Experimental investigation of heat transfer
study in rectangle type straight and oblique finned microchannel heat sink with
nanofluids. International Research Journal of Engineering and Technology 5(12): 621-634.
Awad, M.M. & Muzychka, Y.S. 2010. Two-phase
flow modeling in microchannels and minichannels. Heat Transfer Engineering 31(13): 1023-1033.
Choi, S.B., Barron, R.F. & Warrington, R.O.
1991. Fluid flow and heat transfer in microtubes. American Society of
Mechanical Engineers, Dynamic Systems and Control Division. United Kingdom:
DSC Publications Ltd.
Coleman, J.W. & Garimella, S. 2000. Two-phase flow
regime transitions in microchannel tubes: The effect of hydraulic diameter. Proc.
ASME Heat Transfer Division-2000 HTD 366-4: 71-83.
Dang, T., Tran, N. & Teng, J.T. 2012.
Numerical and experimental investigations on heat transfer phenomena of an
aluminium microchannel heat sink. Applied Mechanics and Materials 145:
129-133.
Duan, Z., Ma, H., He, B., Su, L. & Zhang, X.
2019. Pressure drop of microchannel plate fin heat sinks. Micromachines 10(2): 2-18.
Garimella, S., Agarwal, A. & Killion, J.D.
2005. Condensation pressure drop in circular microchannels. Heat Transfer
Engineering 26(3): 28-35.
Garimella, S., Killion, J.D. & Coleman, J.W. 2002.
An experimentally validated model for two-phase pressure drop in the
intermittent flow regime for circular microchannels. J. Fluids Eng. 124(1): 205-214.
Ghaedamini, H., Lee, P.S. & Teo, C.J. 2013.
Developing forced convection in converging-diverging microchannels. International
Journal of Heat and Mass Transfer 65: 491-499.
Ghasemi, S.E., Ranjbar, A.A. & Hosseini,
M.J. 2017. Experimental and numerical investigation of circular minichannel
heat sinks with various hydraulic diameter for electronic cooling application. Microelectronics Reliability 73: 97-105.
Gu, X., Wen, J., Zhang, X., Wang, C. & Wang,
S. 2019. Effect of tube shape on the condensation patterns of R1234ze(E) in
horizontal mini-channels. International Journal of Heat and Mass Transfer 131: 121-139.
Heyhat, M.M., Kowsary, F., Rashidi, A.M.,
Momenpour, M.H. & Amrollahi, A. 2013. Experimental investigation of laminar
convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Experimental Thermal and Fluid
Science 44: 483-489.
Jusoh, M.F., Zawawi, M.A.M., Man, H.C. &
Kamaruddin, S. 2013. Performance of shallow tube well on groundwater irrigation
in tropical lowland rice cultivation area. Sains Malaysiana 48(2):
1101-1108.
Khan, M.N., Islam, M. & Hasan, M.M. 2011.
Experimental approach to study friction factor and temperature profiles of
fluid flow in circular microchannels. Journal of Mechanical Engineering
Research 3(6): 209-217.
Khoshvaght-Aliabadi, M., Hormozi, F. &
Zamzamian, A. 2014. Experimental analysis of thermal-hydraulic performance of
copper-water nanofluid flow in different plate-fin channels. Experimental
Thermal and Fluid Science 52: 248-258.
Liu, D. & Garimella, S.V. 2004.
Investigation of liquid flow in microchannels. Journal of Thermophysics and
Heat Transfer 18(1): 65-72.
Mala, G.M. & Li, D. 1999. Flow characteristics of
water in microtubes. International Journal of Heat and Fluid Flow 20(2):
142-148.
Marshall, S.D., Balasubramaniam, L.,
Arayanarakool, R., Li, B., Lee, P.S. & Chen, P.C. 2017. Case studies in
thermal engineering methods and techniques of improving experimental testing
for micro fluidic heat sinks. Case Studies in Thermal Engineering 10:
227-233.
Matkovic, M., Cavallini, A., Del Col, D. &
Rossetto, L. 2009. Experimental study on condensation heat transfer inside a
single circular minichannel. International Journal of Heat and Mass Transfer 52(9-10): 2311-2323.
Mehmood, O.U., Mustapha, N., Shafie, S. &
Hayat, T. 2014. Partial slip effect on heat and mass transfer of MHD
peristaltic transport in a porous medium. Sains Malaysiana 43(7):
1109-1118.
Nayak, M.K., Shaw, S., Makinde, O.D. &
Chamkha, A.J. 2018a. Effects of homogenous-heterogeneous reactions on radiative
NACl-CNP nanofluid flow past a convectively heated vertical Riga plate. Journal
of Nanofluids 7(4): 657-667.
Nayak, M.K., Shaw, S., Pandey, V.S. &
Chamkha, A.J. 2018b. Combined effects of slip and convective boundary condition
on MHD 3D stretched flow of nanofluid through porous media inspired by
non-linear thermal radiation. Indian Journal of Physics 92: 1017-1028.
Ranjith Kumar, V., Balasubramanian, K., Kiran
Kumar, K., Tiwari, N. & Bhatia, K. 2019. Numerical investigation of fluid
flow and heat transfer characteristics in novel circular wavy microchannel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of
Process Mechanical Engineering 233(5): 954-966.
Rehman, D., Morini, G.L. & Hong, C. 2019. A
comparison of data reduction methods for average friction factor calculation of
adiabatic gas flows in microchannels. Micromachines 10(2): 2-18.
Shah, M.M. 2016. A correlation for heat transfer
during condensation in horizontal mini/micro channels. International Journal
of Refrigeration Volume 64: 187-202.
Sharma, P. 2014. Forced convective heat transfer
characteristics of water through a minichannel at higher Reynolds number. International Journal for Scientific Research and Development 1(11):
2533-2536.
Shaw, S., Motsa, S.S. & Sibanda, P. 2019.
Nanofluid flow over three different geometries under viscous dissipation and
thermal radiation using the local linearization method. Heat Transfer -
Asian Research 48: 1-17.
Sohel, M.R., Saidur, R., Hassan, N.H., Elias,
M.M., Khaleduzzaman, S.S. & Mahbubul, I.M. 2013. Analysis of entropy
generation using nanofluid flow through the circular microchannel and
minichannel heat sink. International Communications in Heat and Mass
Transfer 46: 85-91.
Tiwari, N. & Moharana, M.K. 2018. Two-phase
flow conjugate heat transfer in wavy microchannel. ASME 2018 16th
International Conference on Nanochannels, Microchannels, and Minichannels.
Toninelli, P., Bortolin, S., Azzolin, M. &
Del Col, D. 2019. Effects of geometry and fluid properties during condensation
in minichannels: Experiments and simulations. Heat and Mass Transfer 55(1): 41-57.
Tripathi, D., Jhorar, R., Bég, O.A. & Shaw,
S. 2018. Electroosmosis modulated peristaltic biorheological flow through an
asymmetric microchannel: Mathematical model. Meccanica 53: 2079-2090.
Tuckerman, D.B. & Pease, R.F.W. 1981.
High-performance heat sinking for VLSI. IEEE Electron Device Letters 2(5): 126-129.
Uysal, C., Arslan, K. & Kurt, H. 2016. A
numerical analysis of fluid flow and heat transfer characteristics of
ZnO-ethylene glycol nanofluid in rectangular microchannels. Strojniški
vestnik-Journal of Mechanical Engineering 62(10): 603-613.
Yu, D. 1995. An experimental and theoretical
investigation of fluid flow and heat transfer in microtubes. ASME/JSME
Thermal Engineering Conference 7(1): 11-16.
Zhang, J., Li, W. & Sherif, S.A. 2016. A
numerical study of condensation heat transfer and pressure drop in horizontal
round and flattened minichannels. International Journal of Thermal Sciences 106: 80-93.
Zhang, M. & Webb, R.L. 2001. Correlation of
two-phase friction for refrigerants in small-diameter tubes. Experimental
Thermal and Fluid Science 25(3-4): 131-139.
*Pengarang untuk surat-menyurat; email: a.almaneeea@mu.edu.sa