Sains Malaysiana 49(4)(2020): 899-908
http://dx.doi.org/10.17576/jsm-2020-4904-19
Analisis Kestabilan Aliran Genangan bagi Bendalir
Mikrokutub terhadap Permukaan
Mencancang dengan Fluks Haba Ditetapkan
(Stability Analysis of Stagnation Flow of a Micropolar Fluid towards a Vertical Surface with
Prescribed Heat Flux)
FATINNABILA KAMAL1,
KHAIRY ZAIMI1 & ANUAR ISHAK2*
1Institut Matematik Kejuruteraan, Kampus Pauh Putra, Universiti Malaysia
Perlis, 02600 Arau, Perlis, Malaysia
2Pusat Pengajian Sains Matematik, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan:
18 September 2018/Diterima: 27 Disember 2019
ABSTRAK
Tujuan penyelidikan ini adalah untuk mengkaji kestabilan
aliran bendalir bagi masalah aliran genangan dalam bendalir mikrokutub
terhadap permukaan mencancang yang telap dengan fluks haba ditetapkan.
Persamaan menakluk dalam bentuk persamaan pembezaan separa tak linear
dijelmakan kepada sistem persamaan pembezaan biasa tak linear menggunakan
penjelmaan keserupaan seterusnya diselesaikan secara berangka menggunakan
penyelesai masalah nilai sempadan, bvp4c dibina dalam perisian MATLAB.
Keputusan berangka diperoleh bagi pekali geseran kulit, nombor Nusselt
setempat serta
profil
halaju dan suhu
bagi beberapa
nilai parameter menakluk yang
terlibat. Penyelesaian dual
didapati wujud bagi julat-julat tertentu parameter keapungan
atau parameter olakan campurandalam
kedua-dua aliran
membantu dan aliran
menentang. Analisis kestabilan
dilakukan untuk
menentukan penyelesaian yang
stabil dalam masa panjang. Didapati bahawa hanya satu
daripada penyelesaian
tersebut yang stabil apabila masa berlalu.
Kata kunci: Analisis kestabilan; aliran genangan;
bendalir
mikrokutub; penyelesaian dual; sedutan/semburan
ABSTRACT
The purpose
of this study was to investigate the stability of fluid flow for the
problem of stagnation flow in a micropolar fluid towards a vertical
permeable surface with prescribed heat flux. The governing nonlinear partial differential equations are transformed
into a system of nonlinear ordinary differential equations using
a similarity transformation which are then solved numerically using
the boundary value problem solver, bvp4c built in MATLAB software. The numerical results are obtained for the skin friction coefficient,
local Nusselt number as well as the velocity and temperature profiles
for some values of the governing parameters involved. Dual solutions are found to exist
for a certain range of the bouyancy parameter or the mixed convection
parameter in both assisting
and opposing flows. A stability analysis is performed to determine which
solution is stable in a long run. It is found that only one of the
solutions is stable as time passes.
Keywords: Dual solutions; micropolar fluid; stability analysis; stagnation flow; suction/injection
RUJUKAN
Ahmadi,
G. 1976. Self-similar solution of incompressible micropolar boundary layer flow
over a semi-infinite plate. International
Journal of Engineering Science 14: 639-646.
Asgharian, A.,
Domairry Ganji, D., Soleimani, S. & Asgharian, S. 2010. Analytical solution
of stagnation flow of a micropolar fluid towards a vertical permeable surface. Thermal Science 14: 383-392.
Awaludin,
I.S., Ishak, A. & Pop, I. 2018. On the stability of MHD boundary layer flow
over a stretching/shrinking wedge. Scientific
Reports 8: 13622.
Bakar, N.A.A.,
Bachok, Arifin, N.M. & Pop, I. 2018. Stability analysis on the flow and
heat transfer of nanofluid past a stretching/shrinking cylinder with suction
effect. Results in Physics 9:
1335-1344.
Eringen, A.C.
2001. Microcontinuum Field Theories
II-Fluent Media. 1st ed. New York: Springer.
Eringen, A.C.
1966. Theory of micropolar fluids. J.
Math. Mech. 16: 1-18.
Gorla, R.S.R. 1988. Combined forced and free convection in micropolar
boundary layer flow on a vertical flat plate. International Journal of Engineering Science 26: 385-391.
Gupta, D.,
Kumar, L., Anwar Bég, O. & Singh, B. 2018. Finite element analysis of MHD
flow of micropolar fluid over a shrinking sheet with a convective surface
boundary condition. Journal of
Engineering Thermophysics 27(2): 202-220.
Hassanien, I.
& Gorla, R.S.R. 1990. Combined forced and free convection in stagnation
flows of micropolar fluids over vertical non-isothermal surfaces. International Journal of Engineering Science 28: 783-792.
Ishak, A.
2010. Thermal boundary layer flow over a stretching sheet in a micropolar fluid
with radiation effect. Meccanica 45:
367-373.
Ishak, A., Nazar, R., Bachok,
N. & Pop, I. 2010. MHD mixed convection flow near the stagnation-point on a
vertical permeable surface. Physica A 389:
40-46.
Jahan, S.,
Sakidin, H., Nazar, R. & Pop, I. 2018. Analysis of heat transfer in
nanofluid past a convectively heated permeable stretching/shrinking sheet with
regression and stability analyses. Results
in Physics 10: 395-405.
Jamaludin, A., Nazar,
R. & Pop, I. 2018. Ingham problem for mixed convection flow of a nanofluid
over a moving vertical plate with suction and injection effects. Sains Malaysiana 47(9): 2213-2221.
Jamaludin, A.,
Nazar, R. & Pop, I. 2017. Stability analysis of flow and heat transfer over
a permeable stretching/shrinking sheet with internal heat generation and
viscous dissipation. Journal of Physics: Conference
Series 890: 012039.
Jusoh, R.,
Nazar, R. & Pop, I. 2018. Magnetohydrodynamic rotating flow and heat
transfer of ferrofluid due to an exponentially permeable stretching/shrinking
sheet. Journal of Magnetism and Magnetic Materials 465: 365-374.
Kamal, F.,
Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD
stagnation-point flow towards a permeable stretching/shrinking sheet in a
nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.
Kline,
K.A. 1977. A spin-vorticity relation for unidirectional plane flows of
micropolar fluids. International Journal
of Engineering Science 15: 131-134.
Merkin, J.H. 1986. On dual solutions occurring in
mixed convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.
Mohamed, R.A.
& Abo-Dahab, S.M. 2009. Influence of chemical reaction and thermal
radiation on the heat and mass transfer in MHD micropolar flow over a vertical
moving porous plate in a porous medium with heat generation. International Journal of Thermal Sciences 48(9): 1800-1813.
Nazar, R.,
Amin, N., Filip, D. & Pop, I. 2004. Stagnation point flow of a micropolar
fluid towards a stretching sheet. International
Journal of Non-Linear Mechanics 39: 1227-1235.
Ramachandran,
N., Chen, T.S. & Armaly, B.F. 1988. Mixed convection in stagnation flows
adjacent to a vertical surfaces. ASME J.
Heat Transfer 110: 373-377.
Rosca, A.V.
& Pop, I. 2013. Mixed convection stagnation point flow past a vertical flat
plate with a second order slip: Heat flux case. International Journal of Heat and Mass Transfer 65: 102-109.
Ridha, A.
1996. Aiding flows non-unique similarity solutions of mixed-convection
boundary-layer equations. Journal of
Applied Mathematics and Physics (ZAMP) 47: 341-352.
Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J.
2006. The effect of transpiration on self- similar boundary layer flow over
moving. International Journal of Engineering Science 44(11-12):
730-737.
Yacob, N.A.
& Ishak, A. 2010. Aliran titik genangan terhadap permukaan meregang dalam
bendalir mikropolar dengan fluks haba permukaan boleh ubah. Sains Malaysiana 39(2): 285-290.
Yahaya, R.I.,
Arifin, N.M. & Isa, S.S.P.M.
2019. Stability analysis of MHD Carreau fluid flow
over a permeable shrinking sheet with thermal radiation. Sains Malaysiana 48(10): 2285-2295.
Zaimi, K.
& Ishak, A. 2012. Aliran genangan bagi bendalir mikrokutub terhadap permukaan mencancang yang telap dengan fluks haba boleh ubah. Sains Malaysiana 41(10):
1263-1270.
*Pengarang
untuk surat-menyurat: email: anuar_mi@ukm.edu.my
|