Sains Malaysiana 49(4)(2020): 899-908

http://dx.doi.org/10.17576/jsm-2020-4904-19

 

Analisis Kestabilan Aliran Genangan bagi Bendalir Mikrokutub terhadap Permukaan

Mencancang dengan Fluks Haba Ditetapkan

(Stability Analysis of Stagnation Flow of a Micropolar Fluid towards a Vertical Surface with Prescribed Heat Flux)

 

FATINNABILA KAMAL1, KHAIRY ZAIMI1 & ANUAR ISHAK2*

 

1Institut Matematik Kejuruteraan, Kampus Pauh Putra, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

 

2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 18 September 2018/Diterima: 27 Disember 2019

 

ABSTRAK

Tujuan penyelidikan ini adalah untuk mengkaji kestabilan aliran bendalir bagi masalah aliran genangan dalam bendalir mikrokutub terhadap permukaan mencancang yang telap dengan fluks haba ditetapkan. Persamaan menakluk dalam bentuk persamaan pembezaan separa tak linear dijelmakan kepada sistem persamaan pembezaan biasa tak linear menggunakan penjelmaan keserupaan seterusnya diselesaikan secara berangka menggunakan penyelesai masalah nilai sempadan, bvp4c dibina dalam perisian MATLAB. Keputusan berangka diperoleh bagi pekali geseran kulit, nombor Nusselt setempat serta profil halaju dan suhu bagi beberapa nilai parameter menakluk yang terlibat. Penyelesaian dual didapati wujud bagi julat-julat tertentu parameter keapungan atau parameter olakan campurandalam kedua-dua aliran membantu dan aliran menentang. Analisis kestabilan dilakukan untuk menentukan penyelesaian yang stabil dalam masa panjang. Didapati bahawa hanya satu daripada penyelesaian tersebut yang stabil apabila masa berlalu.

 

Kata kunci: Analisis kestabilan; aliran genangan; bendalir mikrokutub; penyelesaian dual; sedutan/semburan

 

ABSTRACT

The purpose of this study was to investigate the stability of fluid flow for the problem of stagnation flow in a micropolar fluid towards a vertical permeable surface with prescribed heat flux. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which are then solved numerically using the boundary value problem solver, bvp4c built in MATLAB software. The numerical results are obtained for the skin friction coefficient, local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters involved. Dual solutions are found to exist for a certain range of the bouyancy parameter or the mixed convection parameter in both assisting and opposing flows. A stability analysis is performed to determine which solution is stable in a long run. It is found that only one of the solutions is stable as time passes.

 

Keywords: Dual solutions; micropolar fluid; stability analysis; stagnation flow; suction/injection

 

RUJUKAN

Ahmadi, G. 1976. Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science 14: 639-646.

Asgharian, A., Domairry Ganji, D., Soleimani, S. & Asgharian, S. 2010. Analytical solution of stagnation flow of a micropolar fluid towards a vertical permeable surface. Thermal Science 14: 383-392.

Awaludin, I.S., Ishak, A. & Pop, I. 2018. On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Scientific Reports 8: 13622.

Bakar, N.A.A., Bachok, Arifin, N.M. & Pop, I. 2018. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect. Results in Physics 9: 1335-1344.

Eringen, A.C. 2001. Microcontinuum Field Theories II-Fluent Media. 1st ed. New York: Springer.

Eringen, A.C. 1966. Theory of micropolar fluids. J. Math. Mech. 16: 1-18.

Gorla, R.S.R. 1988. Combined forced and free convection in micropolar boundary layer flow on a vertical flat plate. International Journal of Engineering Science 26: 385-391.

Gupta, D., Kumar, L., Anwar Bég, O. & Singh, B. 2018. Finite element analysis of MHD flow of micropolar fluid over a shrinking sheet with a convective surface boundary condition. Journal of Engineering Thermophysics 27(2): 202-220.         

Hassanien, I. & Gorla, R.S.R. 1990. Combined forced and free convection in stagnation flows of micropolar fluids over vertical non-isothermal surfaces. International Journal of Engineering Science 28: 783-792.

Ishak, A. 2010. Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45: 367-373.

Ishak, A., Nazar, R., Bachok, N. & Pop, I. 2010. MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A 389: 40-46.

Jahan, S., Sakidin, H., Nazar, R. & Pop, I. 2018. Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses. Results in Physics 10: 395-405.

Jamaludin, A., Nazar, R. & Pop, I. 2018. Ingham problem for mixed convection flow of a nanofluid over a moving vertical plate with suction and injection effects. Sains Malaysiana 47(9): 2213-2221.

Jamaludin, A., Nazar, R. & Pop, I. 2017. Stability analysis of flow and heat transfer over a permeable stretching/shrinking sheet with internal heat generation and viscous dissipation. Journal of Physics: Conference Series 890: 012039.

Jusoh, R., Nazar, R. & Pop, I. 2018. Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet. Journal of Magnetism and Magnetic Materials 465: 365-374.

Kamal, F., Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.

Kline, K.A. 1977. A spin-vorticity relation for unidirectional plane flows of micropolar fluids. International Journal of Engineering Science 15: 131-134.

Merkin, J.H. 1986. On dual solutions occurring in mixed convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.

Mohamed, R.A. & Abo-Dahab, S.M. 2009. Influence of chemical reaction and thermal radiation on the heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium with heat generation. International Journal of Thermal Sciences 48(9): 1800-1813.

Nazar, R., Amin, N., Filip, D. & Pop, I. 2004. Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics 39: 1227-1235.

Ramachandran, N., Chen, T.S. & Armaly, B.F. 1988. Mixed convection in stagnation flows adjacent to a vertical surfaces. ASME J. Heat Transfer 110: 373-377.

Rosca, A.V. & Pop, I. 2013. Mixed convection stagnation point flow past a vertical flat plate with a second order slip: Heat flux case. International Journal of Heat and Mass Transfer 65: 102-109.

Ridha, A. 1996. Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. Journal of Applied Mathematics and Physics (ZAMP) 47: 341-352.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self- similar boundary layer flow over moving. International Journal of Engineering Science 44(11-12): 730-737. 

Yacob, N.A. & Ishak, A. 2010. Aliran titik genangan terhadap permukaan meregang dalam bendalir mikropolar dengan fluks haba permukaan boleh ubah. Sains Malaysiana 39(2): 285-290.

Yahaya, R.I., Arifin, N.M. & Isa, S.S.P.M. 2019. Stability analysis of MHD Carreau fluid flow over a permeable shrinking sheet with thermal radiation. Sains Malaysiana 48(10): 2285-2295.

Zaimi, K. & Ishak, A. 2012. Aliran genangan bagi bendalir mikrokutub terhadap permukaan mencancang yang telap dengan fluks haba boleh ubah. Sains Malaysiana 41(10): 1263-1270.

 

*Pengarang untuk surat-menyurat: email: anuar_mi@ukm.edu.my

 

 

 

 

sebelumnya