Sains Malaysiana
49(4)(2020):
953-962
http://dx.doi.org/10.17576/jsm-2020-4904-24
Using Hybrid of
Block-Pulse Functions and Bernoulli Polynomials to Solve Fractional
Fredholm-Volterra Integro-Differential Equations
(Menggunakan
Fungsi Blok-Denyut Hibrid dan Polinomial Bernoulli untuk Menyelesaikan
Persamaan Pembezaan-Integro Fredholm-Volterra Pecahan)
ABBAS
SAADATMANDI* & SAMIYE AKHLAGHI
Department of Applied Mathematics, Faculty of Mathematical Sciences, University
of Kashan, Kashan 87317-53153, Iran
Diserahkan:
31 Mei 2019/Diterima: 5 Januari 2020
ABSTRACT
Fractional integro-differential equations
have been the subject of significant interest in science and engineering
problems. This paper deals with the numerical solution of classes of fractional
Fredholm-Volterra integro-differential equations. The fractional derivative is
described in the Caputo sense. We consider a hybrid of block-pulse functions
and Bernoulli polynomials to approximate functions. The fractional integral
operator for these hybrid functions together with the Legendre-Gauss quadrature
is used to reduce the computation of the solution of the problem to a system of
algebraic equations. Several examples are given to show the validity and
applicability of the proposed computational procedure.
Keywords: Bernoulli polynomials;
Block-pulse functions; fractional integro-differential equations; hybrid
functions; Caputo derivative
ABSTRAK
Persamaan pembezaan integro pecahan telah
menjadi subjek penting dalam masalah sains dan kejuruteraan. Makalah ini
berkaitan dengan penyelesaian berangka kelas persamaan pembezaan integro
Fredholm-Volterra pecahan. Terbitan pecahan diterangkan dalam maksud Caputo.
Fungsi hibrid blok-denyutan dan polinomial Bernoulli dipertimbangkan untuk
penghampiran fungsi. Pengoperasi kamiran pecahan untuk fungsi hibrid
bersama-sama dengan kuadratur Legendre-Gauss digunakan untuk mengurangkan
pengiraan penyelesaian masalah kepada sistem persamaan algebra. Beberapa contoh
diberikan untuk menunjukkan kesahihan dan kebolehgunaan prosedur pengiraan yang
dicadangkan.
Kata kunci: Fungsi blok-denyutan; fungsi
hibrid; persamaan pembezaan integro pecahan; polinomial Bernoulli; terbitan
Caputo
RUJUKAN
Abdullah, F.A. 2013. Simulations of Hirschsprung's disease
using fractional differential equation. Sains Malaysiana
42(5): 661-666.
Abuasad,
S. & Hashim, I. 2018. Homotopy decomposition method for solving
higher-order time-fractional diffusion equation via modified beta derivative. Sains
Malaysiana 47(11): 2899-2905.
Arikoglu,
A. & Ozkol, I. 2009. Solution of fractional integro-differential equations
by using fractional differential transform method. Chaos, Solitons and
Fractals 40: 521-529.
Bayram, M., Hatipoglu, V.F.,
Alkan, S. & Das, S.E. 2018. A solution method for integro-differential
equations of conformable fractional derivative. Thermal Science 22:
S7-S14.
Canuto,
C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 1988. Spectral Methods
in Fluid Dynamic. Englewood
Cliffs, NJ: Prentice-Hall.
Costabile,
F., Dellaccio, F. & Gualtieri, M.I. 2006. A new approach to Bernoulli
polynomials. Rendiconti di Matematica Serie VII 26: 1-12.
Dascioglu,
A. & Bayram, D.V. 2019. Solving fractional Fredholm integro-differential
equations by Laguerre polynomials. Sains Malaysiana 48(1): 251-257.
Ghazanfari,
B., Ghazanfari, A.G. & Veisi, F. 2010. Homotopy perturbation method for the
nonlinear fractional Integro-differential equations. Australian Journal of
Basic and Applied Sciences 4: 5823-5829.
Haddadi,
N., Ordokhani, Y. & Razzaghi, M. 2012. Optimal control of delay systems by
using a hybrid functions approximation. Journal of Optimization Theory and
Applications 153: 338-356.
Huang,
L., Li, X.F., Zhao, Y. & Duan, X.Y. 2011. Approximate solution of
fractional integro-differential equations by Taylor expansion method. Computers
& Mathematics with Applications 62: 1127-1134.
Keshavarz,
E., Ordokhani, Y. & Razzaghi, M. 2019. Numerical solution of nonlinear
mixed Fredholm-Volterra integro-differential equations of fractional order by
Bernoulli wavelets. Computational Methods for Differential Equations 7:
163-176.
Kilbas,
A.A., Srivastava, H.M. & Trujillo, J.J. 2006. Theory and Applications of
Fractional Differential Equations. San Diego: Elsevier.
Kurulay,
M.t. & Secer, A. 2011. Variational iteration method for solving nonlinear
fractional integro-differential equations. International Journal of
Computer Science and Emerging Technologies 2: 18-20.
Mashayekhi,
S., Razzaghi, M. & Wattanataweekul, M. 2016. Analysis of multi-delay and
piecewise constant delay systems by hybrid functions approximation. Differential
Equations and Dynamical Systems 24: 1-20.
Mashayekhi,
S., Ordokhani, Y. & Razzaghi, M. 2012. Hybrid functions approach for
nonlinear constrained optimal control problems. Communications in Nonlinear
Science and Numerical Simulation 17: 1831-1843.
Mashayekhi,
S. & Razzaghi, M. 2016. Numerical solution of the fractional Bagley-Torvik
equation by using hybrid functions approximation. Mathematical Methods in
the Applied Sciences 39: 353-365.
Mashayekhi,
S. & Razzaghi, M. 2015. Numerical solution of nonlinear fractional
integro-differential equations by hybrid functions. Engineering Analysis
with Boundary Elements 56: 81-89.
Meng,
Z., Wang, L., Li, H. & Zhang, W. 2015. Legendre wavelets method for solving
fractional integro-differential equations. International Journal of Computer
Mathematics 92: 1275-1291.
Miller,
K.S. & Ross, B. 1993. An Introduction to the Fractional Calculus and
Fractional Differential Equations. New York: Wiley.
Mittal,
R.C. & Nigam, R. 2008. Solution of fractional integro-differential
equations by Adomian decomposition method. The International Journal of
Applied Mathematics and Mechanics 4: 87-94.
Momani,
S. & Noor, M.A. 2006. Numerical methods for fourth-order fractional
integro-differential equations. Applied Mathematics and Computation 182:
754-760.
Nemati,
S. & Lima, P.M. 2018. Numerical solution of nonlinear fractional
integro-differential equations with weakly singular kernels via a modification
of hat functions. Applied Mathematics and Computation 327: 79-92.
Podlubny,
I. 1999. Fractional Differential Equations. San Diego: Academic Press.
Rahimkhani,
P., Ordokhani, Y. & Babolian, E. 2017. Fractional-order Bernoulli functions
and their applications in solving fractional Fredholem-Volterra
integro-differential equations. Applied Numerical Mathematics 122:
66-81.
Rawashdeh,
E.A. 2006. Numerical solution of fractional integro-differential equations by
collocation method. Applied Mathematics and Computation 176: 1-6.
Saadatmandi,
A. & Dehghan, M. 2011a. A Legendre collocation method for fractional
integro-differential equations. Journal of Vibration and Control 17:
2050-2058.
Saadatmandi,
A. & Dehghan, M. 2011b. A tau approach for solution of the space fractional
diffusion equation. Computers and Mathematics with Applications 62:
1135-1142.
Saadatmandi,
A., Khani, A. & Azizi, M.R. 2018. A sinc-Gauss-Jacobi collocation
method for solving Volterra's population growth model with fractional
order. Tbilisi Mathematical Journal 11: 123-137.
Saeedi,
H., Mohseni, M., Mollahasani, N. & Chuev, G. 2011. A CAS wavelet method for
solving nonlinear Fredholm integro-differential equations of fractional order. Communications
in Nonlinear Science and Numerical Simulation 16: 1151-1163.
Zhu, L.
& Fan, Q. 2012. Solving fractional nonlinear Fredholm integro-differential
equations by the second kind Chebyshev wavelet. Communications in Nonlinear
Science and Numerical Simulation 17: 2333-2341.
*Pengarang untuk surat-menyurat; email:
saadatmandi@kashanu.ac.ir
|