Sains
Malaysiana 49(5)(2020): 1107-1114
http://dx.doi.org/10.17576/jsm-2020-4905-15
Gallic Acid and Methyl Gallate Enhance
Antiproliferative Effect of Cisplatin on Cervical Cancer (HeLa) Cells
(Asid Galik dan Metil Galat Mempertingkat
Kesan Antiproliferatif Cisplatin ke atas Sel Kanser Serviks (HeLa))
NORLIDA MAMAT1,2*, HASMAH
ABDULLAH2, HERMIZI HAPIDIN2 & NOOR
FATMAWATI MOKHTAR3
1Faculty of Health
Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala
Nerus, Terengganu Darul Iman, Malaysia
2School of Health
Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan Darul Naim, Malaysia
3Institute for Research
in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150
Kubang Kerian, Kelantan Darul Naim, Malaysia
Diserahkan: 23 April 2019/ Diterima:
15 Januari 2020
ABSTRACT
Cervical cancer is the
fourth most common cancer-related death affecting women. The drug resistance,
toxicities and undesired side effects become the major limitation in
cisplatin-based chemotherapy. Gallic acid and methyl gallate are the most
abundance phenolic compounds that are widely distributed in plants. This study
was conducted to evaluate the antioxidant and antiproliferative activity of
gallic acid and methyl gallate and their synergistic effects in combination
with cisplatin towards cervical cancer (HeLa) cells. The antioxidant activity
of gallic acid and methyl gallate was measured by using 1,
1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assay. Antiproliferative
activity of gallic acid, methyl gallate and cisplatin on HeLa and NIH/ 3T3 cells
was determined using MTT assay. The effect of gallic acid and methyl gallate
combined with cisplatin were then determined by CompuSyn software. Gallic acid
and methyl gallate showed strong antioxidant activity with EC50 value of 18.23 µM and 19.39 µM, respectively. The IC50 of gallic
acid, methyl gallate and cisplatin on HeLa cells were 13.44 µg/mL, 16.55 µg/mL,
and 8.04 µg/mL whereas in NIH/3T3 cells were 32.90 µg/mL, 35.70 µg/mL, and 6.57
µg/mL. Cisplatin combined with fixed concentration of gallic acid and methyl
gallate could inhibit the proliferation of HeLa cells greater than cisplatin
alone. Interestingly, gallic acid and methyl gallate in combination with
cisplatin at the concentration of 0.51-4.02 µg/mL have shown synergistic
effects. Therefore, our study suggested that gallic acid and methyl gallate in
combination with cisplatin have the potential to be developed as
chemotherapeutic agents for cervical cancer.
Keywords: Antioxidant
activity; antiproliferative activity; gallic acid; methyl gallate; synergistic
effect
ABSTRAK
Kanser serviks merupakan
kanser keempat yang paling kerap dihidapi dalam kalangan wanita. Faktor
kerintangan, kesan toksik dan kesan sampingan yang tidak diingini mengehadkan
penggunaan cisplatin dalam rawatan kanser. Asid galik dan metil galat merupakan
fenolik yang paling banyak ditemui dalam tumbuhan. Kajian ini dijalankan untuk
menilai aktiviti antioksidan dan akiviti antiproliferatif asid galik dan metil
galat dan kesan sinergi kombinasinya dengan cisplatin ke atas sel kanser
serviks (HeLa). Aktiviti antioksidan asid galik dan metil galat ditentukan
dengan asai hapus-sisa radikal bebas DPPH. Manakala aktiviti antiproliferatif
ke atas sel HeLa dan NIH/3T3 ditentukan melalui asai MTT. Kesan kombinasi
antara asid galik dan metil galat dengan cisplatin ditentukan dengan perisian
CompuSyn. Asid galik dan metil galat menunjukkan aktiviti antioksidan yang kuat
dengan nilai EC50 masing-masing adalah 18.23 µM dan 19.39 µM. IC50, bagi asid galik, metil galat dan cisplatin ke atas sel HeLa pula adalah 13.44
µg/mL, 16.55 µg/mL dan 8.04 µg/mL manakala pada sel NIH/ 3T3 adalah 32.90
µg/mL, 35.70 µg/mL dan 6.57 µg/mL. Kombinasi antara cisplatin dan asid galik
serta metil galat pada kepekatan tertentu berupaya merencat pertumbuhan sel HeLa
dengan lebih cekap berbanding dengan rawatan cisplatin sahaja. Kombinasi asid
galik dan metil galat dengan cisplatin pada kepekatan 0.51-4.02 µg/mL juga
telah menunjukkan kesan sinergi. Oleh itu, kombinasi asid galik dan metil galat
dengan cisplatin berpotensi untuk dibangunkan sebagai agen rawatan kemoterapi
untuk kanser serviks.
Kata kunci: Aktiviti
antioksidan; aktiviti antiproliferatif; asid galik; kesan sinergi; metil galat
RUJUKAN
Alma,
M.H., Mavi, A., Yildirim, A., Digrak, M. & Hirata, T. 2003. Screening
chemical composition and in vitro antioxidant and antimicrobial
activities of the essential oils from Origanum
syriacum L. growing in Turkey. Biological
and Pharmaceutical Bulletin 26(12): 1725-1729.
Arbyn, M., Castellsague, X., de Sanjose, S., Bruni,
M., Saraiya, L., Bray, F. & Ferlay, J. 2011. Worldwide burden of cervical
cancer in 2008. Annals of Oncology 22: 2675-2686.
Asnaashari,
M., Farhoosh, R. & Sharif, A. 2014. Antioxidant activity of gallic acid and
methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water
emulsion. Food Chemistry 159:
439-444.
Asci,
H., Ozmen, O., Ellidag, Y.H., Aydin, B., Bas, E. & Yilmat, N. 2017. The
impact of gallic acid on the methotrexate-induced kidney damage in rats. Journal
of Food and Drug Analysis 25:
890-897.
Conklin, K.A. 2000. Dietary antioxidants during cancer
chemotherapy: Impact on chemotherapeutic effectiveness and development of side
effects. Nutr. Cancer 37(1): 1-18.
Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D.
& Rakariyatham, N. 2007. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chemistry 100: 1044-1048.
Dasari, S. & Bernard, P. 2014. Cisplatin in cancer
therapy: Molecular mechanisms of action. European Journal of Pharmacology 740: 364-378.
Farhoosh, R. & Nyström, L. 2018. Antioxidant
potency of gallic acid, methyl gallate and their combinations in sun flower oil
triacylglycerols at high temperature. Food Chemistry 244: 29-35.
Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R.,
Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D. & Bray, F.
2013. GLOBOCAN 2012 v1.0, Cancer Incidence
and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon: International Agency for Research on
Cancer. World Health Organization.
Gordon, C., Carmichael, J.C. & Tewari, K.S. 2018.
Gynecologic Oncology Reports Oncofertility in the setting of advanced cervical
cancer - A case report. Gynecologic Oncology Reports 24: 27-29.
Heidarian, E., Keloushadi, M., Ghatreh-samani, K.
& Jafari-dehkordi, E. 2017. Gallic acid inhibits invasion and reduces IL-6
gene expression, pSTAT3, pERK1/2, and pAKT cellular signaling proteins in human
prostate cancer DU-145 cells. International
Journal of Cancer Management 10(11):
Higuchi, K. & Yanagawa, T. 2019. Evaluating dose
of cisplatin responsible for causing nephrotoxicity. PLoS ONE 14(4): e0215757.
Jeon, M., Rahman, N. & Kim, Y. 2016. Wnt/β-catenin
signaling plays a distinct role in methyl gallate-mediated inhibition of
adipogenesis. Biochemical and Biophysical Research Communications 479: 22-27.
Kalita, D., Kar, R. & Handique, J.G. 2012. A
theoretical study on the antioxidant property of gallic acid and its
derivatives. Journal of Theoretical and Computational Chemistry 11(2): 391-402.
Kamatham,
S., Kumar, N. & Gudipalli, P. 2015. Isolation and characterization of
gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect
on human epidermoid carcinoma A431 cells. Toxicology
Reports 2: 520-529.
Karamac,
M., Kosinska, A. & Pegg, R.B. 2005. Comparison of radical-scavenging
activities for selected phenolic acids. Polish
Journal of Food and Nutrition Science 14(2): 165-170.
Karpe,
A., Patil, V.M., Joshi, A., Noronha, V., Gupta, S., Ramaswamy, A., Sahu, A.,
Doshi, V., Gupta, T., Rath, S., Banavali, S. & Prabhash, K. 2016. Weekly
cisplatin (30-40 mg/m2) as radiosensitizer: Is it high or moderate emetic
agent? Indian Journal of Cancer 53(3): 454-456.
Kawada,
M., Ohno, Y., Ri, Y., Ikoma, T., Yuugetu, H., Asai, T., Watanabe, M., Yasuda,
N., Akao, S., Takemura, G., Minatoguchi, S., Gotoh, K., Fujiwara, H. &
Fukuda, K. 2001. Anti-tumor effect of gallic acid on LL-2 lung cancer cells
transplanted in mice. Anti-Cancer Drugs 12(10):
847-852.
Kikuzaki,
H., Hisamoto, M., Hirose, K., Akiyama, K. & Taniguchi, H. 2002. Antioxidant
properties of ferulic acid and its related compounds. Journal of
Agricultural and Food Chemistry 50:
2161-2168.
Kim,
H., Lee, G., Sohn, S., Lee, C., Kwak, J.W. & Bae, H. 2016. Immunotherapy
with methyl gallate, an inhibitor of Treg cell migration, enhances the
anti-cancer effect of cisplatin therapy. Korean
Journal of Physiology and Pharmacology 20(3): 261-268.
Koraneekit,
A., Limpaiboon, T., Sangka, A., Boonsiri, P., Daduang, S. & Daduang, J.
2018. Synergistic effects of cisplatin-caffeic acid induces apoptosis in human
cervical cancer cells via the mitochondrial pathways. Oncology Letters 15: 7397-7402.
Lu,
Z., Nie, G., Belton, P.S., Tang, H. & Zhao, B. 2006. Structure-activity
relationship analysis of antioxidant ability and neuroprotective effect of
gallic acid derivatives. Neurochemistry International 48: 263-274.
Lu, Y., Jiang, F., Jiang, H., Wu, K., Zheng, X., Cai,
Y., Katakowski, M., Chopp, M. & To, S.T. 2010. Gallic acid suppresses cell
viability, proliferation, invasion and angiogenesis in human glioma cells. European
Journal of Pharmacology 641:
102-107.
Malaysian National Cancer Registry Report 2007-2011. 2016. Ministry of Health, Malaysia.
Muhamad, N.A., Kamaluddin, M.A., Adon, M.Y., Noh,
M.A., Bakhtiar, M.F., Tamim, N.S.I., Mahmud, S.H. & Aris, T. 2015. Survival
rates of cervical cancer patients in Malaysia. Asian Pacific Journal of
Cancer Prevention 16(7):
3067-3072.
Nam, B., Rho, K.J., Shin, D. & Son, J. 2016.
Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by
accelerating EGFR turnover. Bioorganic & Medicinal Chemistry Letters 26: 4571-4575.
Oboh, G., Ogunsuyi, O.B., Ogunbadejo, M.D. &
Adefegha, S.A. 2016. Influence of gallic acid on α -amylase and α
-glucosidase inhibitory properties of acarbose. Journal of Food and Drug Analysis 24: 627-634.
Omar, W.A.W., Azhar, N.A., Fadzilah, N.H. & Nik
Mohamed Kamal, N.N.S. 2016. Bee pollen extract of Malaysian stingless bee
enhances the effect of cisplatin on breast cancer cell lines. Asian Pacific Journal of Tropical
Biomedicine 6(3): 265-269.
Park, W.H. 2017. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncology Reports 37: 1277-1283.
Purena, R., Seth, R. & Bhatt, R. 2018. Protective
role of Emblica officinalis hydro-ethanolic leaf extract in cisplatin induced nephrotoxicity in rats. Toxicology Reports 5: 270-277.
Qin, S., Cheng, Y., Lei, Q., Zhang, A. & Zhang, X.
2018. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 171: 178-197.
Selvi, S.K., Vinoth, A., Varadharaian, T., Weng, C.F.
& Padma, V.V. 2017. Neferine augments therapeutic efficacy of cisplatin
through ROS-mediated non-canonical autophagy in human lung adenocarcinoma (A549
cells). Food and Chemical Toxicology 103: 28-40.
Sevgi, K., Tepe, B. & Sarikurkcu, C. 2015.
Antioxidant and DNA damage protection potentials of selected phenolic acids. Food
and Chemical Toxicology 77:
12-21.
Sun, C., Zhang, Q., Zheng, G. & Feng, B. 2019.
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomedicine
& Pharmacotherapy 110:
518-527.
Tuorkey, M.J. 2015. Cancer therapy with phytochemicals:
Present and future perspectives. Biomedical and Environmental Sciences 28(11): 808-819.
Wang, R., Ma, L., Weng, D., Yao, J., Liu, X. & Jin,
F. 2016. Gallic acid induces apoptosis and enhances the anticancer effects of
cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent
mitochondrial apoptotic pathway. Oncology Reports 35: 3075-3083.
You, B.R., Moon, H.J., Han, Y.H. & Park, W.H.
2010. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology 48: 1334-1340.
Zhao, B. & Hu, M. 2013. Gallic acid reduces cell
viability, proliferation, invasion and angiogenesis in human cervical cancer
cells. Oncology Letters 6:
1749-1755.
*Pengarang untuk surat-menyurat; email:
norlida@unisza.edu.my
|