Sains Malaysiana 49(6)(2020): 1351-1358
http://dx.doi.org/10.17576/jsm-2020-4906-13
Role of Novel Therapeutic
Agents in Modulating Invadopodia Formation in Metastatic Breast Cancer
(Peranan Agen Terapi Baru
dalam Memodulasikan Pembentukan Invadopodia dalam Kanser Payudara Metastatik)
SITI NOR AINI HARUN1, NURUL
AKMARYANTI ABDULLAH1, NORAINA MUHAMAD ZAKUAN1, HAFIZAH
ABDUL HAMID1, MUHAMMAD ZULFADLI MEHAT2 & NUR FARIESHA
MD HASHIM1*
1Department of Biomedical Sciences, Faculty of Medicine
and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Department of Human Anatomy, Faculty of Medicine and
Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
Diserahkan: 12 Julai 2019/ Diterima: 11
Februari 2020
ABSTRACT
The
ability to colonize distant organs which is lethal has made metastatic breast
cancer become the top ten causes of mortality worldwide. Specialized actin-rich
protrusions termed invadopodia were thought to be formed by highly invasive
cells to degrade the extracellular matrix to drive cancer invasion and
metastasis. Identification of compound(s) to hinder the formation ofinvadopodia
is important to resist the metastasis of breast cancer as well as to yield
anti-metastasis targeted therapy. The current review aims to provide new
insights on cancer invasion and candidate compound(s) capable to disrupt
invadopodia formation and invadopodia-related proteins.
Keywords: Cancer invasion; invadopodia; metastatic
breast cancer
ABSTRAK
Keupayaan untuk merebak ke organ lain telah menjadikan
kanser payudara metastatik antara puluhan penyebab kematian di seluruh dunia.
Protusi khusus diperkaya-aktin ataupun invadopodia dikatakan terbentuk daripada
sel-sel yang invasif sehingga mendegradasi matriks ekstrasel yang seterusnya
mendorong kepada serangan kanser dan metastasis. Pengenalpastian kompaun untuk
menghalang pembentukan invadopodia adalah penting untuk menentang kanser
payudara metastatik serta mencari terapi sasaran anti-metastatik. Ulasan ini
bertujuan untuk memberikan pandangan baru mengenai serangan kanser dan kompaun
yang berkemungkinan menghalang pembentukan invadopodia dan protein berkaitan
dengan invadopodia.
Kata kunci: Invadopodia; kanser payudara metastatik;
serangan kanser
RUJUKAN
Anand, P., Kunnumakkara,
A.B., Newman, R.A. & Aggarwal, B.B. 2007. Bioavailability of curcumin:
Problems and promises. Molecular
Pharmaceutics 4(6): 807-818.
Anders, C. & Carey, L.A.
2008. Understanding and treating triple-negative breast cancer. Oncology
(Williston Park) 22(11): 1233-1243.
Artym, V.V., Zhang, Y.,
Seillier-Moiseiwitsch, F., Yamada, K.M. & Mueller, S.C. 2006. Dynamic
interactions of cortactin and membrane type 1 matrix metalloproteinase at
invadopodia: Defining the stages of invadopodia formation and function. Cancer
Research 66(6): 3034-3043.
Azizah,
A.M., Ibrahim, N.S. & Abdullah, N.H. 2015. Malaysian National Cancer
Registry Report 2007-2011. Putrajaya: Ministry of Health, Malaysia.
Balzer,
E.M., Whipple, R.A., Thompson, K., Boggs, A.E., Slovic, J., Cho, E.H., Matrone,
M.A., Yoneda, T., Mueller, S.C. & Martin, S.S. 2010. c-Src differentially
regulates the functions of microtentacles and invadopodia. Oncogene 29(48): 6402-6408.
Bergamo,
A., Masi, A., Peacock, A.F.A., Habtemariam, A., Sadler, P.J. & Sava, G.
2010. In vivo tumour and
metastasis reduction and in vitro effects on invasion assays of the ruthenium
RM175 and osmium AFAP51 organometallics in the mammary cancer model. Journal of Inorganic Biochemistry 104(1): 79-86.
Bravo-Cordero,
J.J., Hodgson, L. & Condeelis, J. 2012. Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology 24(2): 277-283.
Buccione,
R., Orth, J.D. & McNiven, M.A. 2004. Foot and mouth: Podosomes, invadopodia and circular dorsal ruffles. Nature Reviews Molecular Cell Biology 5(8): 647-657.
Chen,
Q., Zheng, Y., Jiao, D., Chen, F., Hu, H., Wu, Y., Song, J., Yan, J., Wu, L.
& Lv, G. 2014. Curcumin inhibits
lung cancer cell migration and invasion through Rac1-dependent signaling pathway. The Journal of Nutritional Biochemistry 25(2): 177-185.
Chen, Q.Y.,
Jiao, D.M., Yao, Q.H., Yan, J., Song, J., Chen, F.Y., Lu, G.H. & Zhou, J.Y. 2012. Expression analysis of Cdc42 in lung
cancer and modulation of its expression by curcumin in lung cancer cell lines. International Journal of Oncology 40(5): 1561-1568.
Chen,
W.T. 1989. Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. Journal of Experimental Zoology 251(2): 167-185.
Cheung,
K.J. & Ewald, A.J. 2016. A collective route to metastasis: Seeding by tumor cell clusters. Science 352(6282): 167-169.
Chevalier,
C., Collin, G., Descamps, S., Touaitahuata, H., Simon, V., Reymond, N., Fernandez, L., Milhiet, P.E., Georget, V.,
Urbach, S., Lasorsa, L., Orsetti, B., Boissière-Michot, F., Lopez-Crapez, E., Theillet, C., Roche, S. & Benistant,
C. 2016. TOM1L1 drives membrane
delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nature Communications 7(1): 1-16.
Chhabra,
E.S. & Higgs, H.N. 2007. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biology 9(10): 1110-1121.
Chiu,
T-L. & Su, C-C. 2009. Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and
decreasing NF-kBp65 expression in breast cancer MDA-MB-231 cells. International
Journal of Molecular Medicine 23(4): 469-475.
Clark,
E.S., Whigham, A.S., Yarbrough, W.G. & Weaver, A.M. 2007. Cortactin is an essential regulator of matrix
metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Research 67(9): 4227-4235.
David-Pfeuty,
T. & Singer, S.J. 1980. Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured
fibroblasts transformed by Rous sarcoma virus. Proceedings of the National
Academy of Sciences of the United States of America 77(11): 6687-6691.
Dent,
R., Trudeau, M., Pritchard, K.I., Hanna, W.M., Kahn, H.K., Sawka, C.A.,
Lickley, L.A., Rawlinson, E., Sun,
P. & Narod, S.A. 2007. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clinical Cancer Research 13(15): 4429-4434.
Di,
G.H., Li, H.C., Shen, Z.Z. & Shao, Z.M. 2003. Analysis of
anti-proliferation of curcumin on
human breast cancer cells and its mechanism. Zhonghua Yi Xue Za Zhi 83(20): 1764-1768.
Di
Martino, J., Paysan, L., Gest, C., Lagrée, V., Juin, A., Saltel, F. &
Moreau, V 2014. Cdc42 and Tks5: A
minimal and universal molecular signature for functional invadosomes. Cell Adhesion & Migration 8(3): 280-292.
Díaz,
B., Yuen, A., Iizuka, S., Higashiyama, S. & Courtneidge, S.A. 2013. Notch
increases the shedding of HB-EGF by
ADAM12 to potentiate invadopodia formation in hypoxia. Journal of Cell Biology 201(2): 279-292.
Doyle,
A.D., Petrie, R.J., Kutys, M.L. & Yamada, K.M. 2013. Dimensions in cell migration. Current Opinion in Cell Biology 25(5): 642-649.
Egeblad,
M. & Werb, Z. 2002. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2(3): 161-174.
Fu,
H., Wu, R., Li, Y., Zhang, L., Tang, X., Tu, J., Zhou, W., Wang, J. & Shou,
Q. 2016. Safflower yellow prevents
pulmonary metastasis of breast cancer by inhibiting tumor cell invadopodia. The
American Journal of Chinese Medicine 44(7): 1491-1506.
Gligorijevic,
B., Wyckoff, J., Yamaguchi, H., Wang, Y., Roussos, E.T. & Condeelis, J.
2012. N-WASP-mediated invadopodium
formation is involved in intravasation and lung metastasis of mammary tumors. Journal of Cell Science 125(3): 724-734.
Gujam,
F.J.A., Going, J.J., Mohammed, Z.M.A., Orange, C., Edwards, J. & McMillan, D.C. 2014. Immunohistochemical detection
improves the prognostic value of lymphatic and
blood vessel invasion in primary ductal breast cancer. BMC cancer 14(1): 676.
Gupta,
S.C., Patchva, S., Koh, W. & Aggarwal, B.B. 2012. Discovery of curcumin, a component of golden spice, and its
miraculous biological activities. Clinical
and Experimental Pharmacology and
Physiology 39(3): 283-299.
Hall,
A. 1998. Rho GTPases and the actin cytoskeleton. Science 279(5350): 509-514.
Hanahan,
D. & Weinberg, R.A. 2011. Hallmarks of cancer: The next generation. Cell 144(5):
646-674.
Harun,
S.N.A., Israf, D.A., Tham, C.L., Lam, K.W., Cheema, M.S. & Hashim, N.F.M.
2018. The molecular targets and
anti-invasive effects of 2,6-bis-(4-hydroxyl-3methoxybenzylidine)
cyclohexanone or BHMC in MDA-MB-231 human breast cancer cells. Molecules 23(4): 865.
Hassan,
Z.K. & Daghestani, M.H. 2012. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line. Asian Pacific Journal of Cancer Prevention 13(7): 3259-3264.
Hoshino,
D., Branch, K.M. & Weaver, A.M. 2013. Signaling inputs to invadopodia and podosomes. Journal of Cell Science 126(14): 2979-2989.
Ichikawa,
K. 2015. Synergistic effect of blocking cancer cell invasion revealed by computer simulations. Mathematical Biosciences and Engineering 12(6): 1189-1202.
Jiang,
P., Enomoto, A. & Takahashi, M. 2009. Cell biology of the movement of breast cancer cells: Intracellular signalling and
the actin cytoskeleton. Cancer Letter 284(2): 122-130.
Koo,
H.J., Shin, S., Choi, J.Y., Lee, K.H., Kim, B.T. & Choe, Y.S. 2015.
Introduction of methyl groups at C2
and C6 positions enhances the antiangiogenesis activity of curcumin. Scientific Reports 5: 14205.
Krausz,
A.E., Adler, B.L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R.A.,
Chandra, D., Liang, H., Gunther, L.,
Clendaniel, A., Harper, S., Friedman, J.M., Nosanchuk, J.D. & Friedman, A.J. 2015. Curcumin-encapsulated
nanoparticles as innovative antimicrobial and
wound healing agent. Nanomedicine:
Nanotechnology, Biology, and Medicine 11(1): 195-206.
Kuo,
J.C., Han, X., Hsiao, C.T., Yates, J.R. & Waterman, C.M. 2011. Analysis of
the myosin-II-responsive focal
adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nature Cell Biology 13(4): 383-395.
Langley,
R.R. & Fidler, I.J. 2011. The seed and soil hypothesis revisited - The role
of tumorstroma interactions in
metastasis to different organs. International
Journal of Cancer 128(11): 2527-2535.
Lee,
W.H., Loo, C.Y., Young, P.M., Rohanizadeh, R. & Traini, D. 2016. Curcumin nanoparticles attenuate
production of pro-inflammatory markers in lipopolysaccharide-induced
macrophages. Pharmaceutical Research 33(2): 315-327.
Linder, S. &
Aepfelbacher, M. 2003. Podosomes: Adhesion hot-spots of invasive cells. Trends in Cell Biology 13(7): 376-385.
Liotta,
L.A., Steeg, P.S. & Stetler-Stevenson, W.G. 1991. Cancer metastasis and angiogenesis: An imbalance of positive
and negative regulation. Cell 64(2): 327-336.
Lohmer,
L.L., Kelley, L.C., Hagedorn, E.J. & Sherwood, D.R. 2014. Invadopodia and basement membrane invasion in vivo. Cell Adhesion & Migration 8(3): 246-255.
Mader,
C.C., Oser, M., Magalhaes, M.A.O., Bravo-Cordero, J.J., Condeelis, J., Koleske,
A.J. & Gil-Henn, H. 2011. An
EGFR-Src-Arg-Cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Research 71(5): 1730-1741.
Massagué,
J., Batlle, E. & Gomis, R.R. 2017. Understanding the molecular mechanisms driving metastasis. Molecular Oncology 11(1): 3-4.
Md
Hashim, N.F., Nicholas, N.S., Dart, A.E., Kiriakidis, S., Paleolog, E. &
Wells, C.M. 2013. Hypoxia-induced
invadopodia formation: A role for -PIX. Open
Biology 3(6): 120159-120159.
Mendonsa,
A.M., Na, T.Y. & Gumbiner, B.M. 2018. E-cadherin in contact inhibition and cancer. Oncogene 37(35): 4769-4780.
Ming-Tatt,
L., Khalivulla, S.I., Akhtar, M.N., Lajis, N., Perimal, E.K., Akira, A., Ali,
D.I. & Sulaiman, M.R. 2013.
Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction
injury-induced neuropathic pain: Participation of the κ-Opioid receptor and KATP. Pharmacology Biochemistry and Behavior 114-115: 58-63.
Miyazawa,
Y., Uekita, T., Ito, Y., Seiki, M., Yamaguchi, H. & Sakai, R. 2013. CDCP1 regulates the function of MT1-MMP and
invadopodia-mediated invasion of cancer cells. Molecular Cancer Research 11(6): 628-637.
Murphy,
D.A. & Courtneidge, S.A. 2011. The ‘ins’ and ‘outs’ of podosomes and invadopodia: Characteristics, formation
and function. Nature Reviews Molecular
Cell Biology 12(7): 413-426.
Neil,
J.R. & Schiemann, W.P. 2008. Altered TAB1: IKK interaction promotes TGF-β-mediated NF-κB activation
during breast cancer progression. Cancer
research 68(5): 1462-1470.
Orsetti,
B., Nugoli, M., Cervera, N., Lasorsa, L., Chuchana, P., Ursule, L., Nguyen, C., Redon, R., Du Manoir, S., Rodriguez, C.
& Theillet, C. 2004. Genomic and expression profiling of chromosome 17 in breast cancer reveals
complex patterns of alterations and novel candidate
genes. Cancer Research 64(18): 6453-6460.
Paget,
S. 1889. The distribution of secondary growths in cancer of the breast. The Lancet 133(3421): 571-573.
Pollard,
T.D. & Borisy, G.G. 2003. Cellular motility driven by assembly and
disassembly of actin filaments. Cell 112(4): 453-465.
Poste,
G. & Fidler, I.J. 1980. The pathogenesis of cancer metastasis. Nature 283(5743): 139-146.
Razak,
N.A., Akhtar, M.N., Abu, N., Ho, W.Y., Tan, S.W., Zareen, S., Taj-ud-din, S.N. bin, Long, K., Alitheen, N.B. & Yeap,
S.K. 2017. The in vivo anti-tumor
effect of curcumin derivative
(2E{,}6E)-2{,}6-bis(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC) on 4T1 breast cancer cells. RSC
Advance 7(57): 36185-36192.
Revach,
O.Y., Winograd-Katz, S.E., Samuels, Y. & Geiger, B. 2016. The involvement of mutant
Rac1 in the formation of invadopodia in cultured melanoma cells. Experimental Cell Research 343(1): 82-88.
Ridley,
A.J. 2015. Rho GTPase signalling in cell migration. Current Opinion in Cell Biology 36: 103-112.
Riggi,
N., Aguet, M. & Stamenkovic, I. 2018. Cancer metastasis: A reappraisal of
its underlying mechanisms and their
relevance to treatment. Annual Review of
Pathology: Mechanisms of Disease 13: 117-140.
Sahai, E.
2005. Mechanisms of cancer cell invasion. Current
Opinion in Genetics & Development 15(1): 87-96.
Schnoor,
M., Stradal, T.E. & Rottner, K. 2017. Cortactin: Cell functions of a multifaceted actin-binding protein. Trends in Cell Biology 28(2): 79-98.
Scolaro,
C., Bergamo, A., Brescacin, L., Delfino, R., Cocchietto, M., Laurenczy, G., Geldbach, T.J., Sava, G. & Dyson,
P.J. 2005. In vitro and in vivo evaluation of ruthenium (II)- arene PTA complexes. Journal of Medicinal Chemistry 48(12): 4161-4171.
Scully,
O.J., Bay, B.H., Yip, G. & Yu, Y. 2012. Breast cancer metastasis. Cancer Genomics-Proteomics 9(5): 311-320.
Shao,
Z.M., Shen, Z.Z., Liu, C.H., Sartippour, M.R., Go, V.L., Heber, D. & Nguyen,
M. 2002. Curcumin exerts multiple
suppressive effects on human breast carcinoma cells. International Journal of
Cancer 98(2): 234-240.
Shen,
H.L., Liu, Q.J., Yang, P.Q. & Tian, Y. 2015. Protein interactions of
cortactin in relation to
invadopodia formation in metastatic renal clear cell carcinoma. Tumor Biology 36(5): 3417-3422.
Smid,
M., Wang, Y., Klijn, J.G.M., Sieuwerts, A.M., Zhang, Y., Atkins, D., Martens,
J.W.M. & Foekens, J.A. 2006.
Genes associated with breast cancer metastatic to bone. Journal of Clinical Oncology 24(15): 2261-2267.
Steeg,
P.S. 2016. Targeting metastasis. Nature
Reviews Cancer 16(4): 201-218.
Sun,
K., Duan, X., Cai, H., Liu, X., Yang, Y., Li, M., Zhang, X. & Wang, J.
2016. Curcumin inhibits LPA-induced
invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells. Clinical
and Experimental Medicine 16(1): 37-47.
Tang,
D., Tao, D., Fang, Y., Deng, C., Xu, Q. & Zhou, J. 2017. TNF-alpha promotes invasion and metastasis via NF-kappa B
pathway in oral squamous cell carcinoma. Medical Science Monitor Basic Research 23: 141-149.
Tarone,
G., Cirillo, D., Giancotti, F.G., Comoglio, P.M. & Marchisio, P.C. 1985.
Rous sarcoma virus-transformed
fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Experimental Cell Research 159(1): 141-157.
Tham,
C.L., Lam, K.W., Rajajendram, R., Cheah, Y.K., Sulaiman, M.R., Lajis, N.H.,
Kim, M.K. & Israf, D.A. 2011.
The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on
proinflammatory signaling pathways and CLP-induced
lethal sepsis in mice. European Journal
of Pharmacology 652(1-3): 136-144.
Tham,
C.L., Liew, C.Y., Lam, K.W., Mohamad, A.S., Kim, M.K., Cheah, Y.K., Zakaria, Z.A., Sulaiman, M.R., Lajis, N.H. &
Israf, D.A. 2010. A synthetic curcuminoid derivative inhibits nitric oxide and proinflammatory cytokine synthesis. European Journal of Pharmacology 628(1-3): 247-254.
Tolde,
O., Rösel, D., Veselý, P., Folk, P. & Brábek, J. 2010. The structure of
invadopodia in a complex 3D
environment. European Journal of Cell
Biology 89(9): 674-680.
Wang,
S., Li, E., Gao, Y., Wang, Y., Guo, Z., He, J., Zhang, J., Gao, Z. & Wang,
Q. 2013. Study on invadopodia
formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS ONE 8(2): e56448.
Wang,
T., Liu, N.S., Seet, L.F. & Hong, W. 2010. The emerging role of VHS domain containing Tom1, Tom1L1 and Tom1L2
in membrane trafficking. Traffic 11(9): 1119-1128.
Wang,
Z., Liang, X., Cai, M. & Du, G. 2016. Analysis of invadopodia formation in
breast cancer cells. Methods in Molecular Biology 1406: 203-210.
Ward,
J.D., Ha, J.H., Jayaraman, M. & Dhanasekaran, D.N. 2015. LPA-mediated
migration of ovarian cancer cells
involves translocalization of Gαi2to invadopodia and association with Src and β-pix. Cancer Letters 356(2): 382-391.
Weigelt,
B., Peterse, J.L. & Van’t Veer, L.J. 2005. Breast cancer metastasis:
Markers and models. Nature Reviews Cancer 5(8): 591-602.
Wu,
Q., He, J., Mei, W., Zhang, Z., Wu, X. & Sun, F. 2014. Arene ruthenium (II)
complex, a potent inhibitor against
proliferation, migration and invasion of breast cancer cells, reduces stress fibers, focal adhesions
and invadopodia. Metallomics 6(12): 2204-2212.
Zambonin,
A., Teti, A., Carano, A. & Marchisio, P.C. 1988. The distribution of
podosomes in osteoclasts cultured on
bone laminae: Effect of retinol. Journal
of Bone and Mineral Research 3(5): 517-523.
*Pengarang
untuk surat-menyurat; email: nurfariesha@upm.edu.my
|