Sains Malaysiana 49(6)(2020): 1451-1460
http://dx.doi.org/10.17576/jsm-2020-4906-23
Ab-initio Calculations of the
Structural, Electronic and Optical Properties of (CdSe)2 Clusters
(Penghitungan Ab-initio Sifat Struktur, Elektronik dan Optikal Kelompok (CdSe)2)
A.I.A. ALSELAWE1*, MHH JUMALI1, G. GOPIR1 & M.M. ANAS2
1School of Applied Physics, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Fakulti Sains dan Teknologi, Universiti Sains Islam
Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Darul Khusus, Malaysia
Diserahkan: 17 Disember
2019/Diterima: 24 Februari 2020
ABSTRACT
The distinctive properties of cadmium
selenide (CdSe) semiconductor situated it in a multitudinous number of
applications. Although (CdSe)2 cluster has more than one isomer, the
previous studies concentrated merely on one isomer. The goal of this study was
to determine the various stable geometric structure isomers of (CdSe)2 clusters; also, structural, electronic, and optical properties of the stable
isomers are investigated using density functional theory (DFT). First, geometry
optimization calculations of the possible geometric isomers were carried out
using the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS) algorithm. Total
ground-state energy calculations showed that all the converged isomers have a
high probability of existing in any experiment, relying on the implemented
experimental technique. Twenty initial possible geometric structures were
investigated, in which eleven isomers were converged. However, all of them are
relaxed in the 2D planar geometry. The results showed that eleven possible
stable isomers were disclosed, where the final structures of the converged
isomers produced six different structures; three of them were not detected
before. The rhombus structure was ascertained to be the most stable isomer
followed by the trapezoidal structure of (CdSe)2. The
isomers’ Cd-Se
bond length are 2.50-2.74 Å, and the average Cd-Se-Cd, Se-Cd-Se angles were
64.5o-123o and 56.3o-114.2o,
respectively. Furthermore, the bond angles show that the selenium atom
lone-pairs electrons are responsible for shifting the isomers’ structure from
the linearity. The total ground-state energy differences were 0.00-1.82 eV. The
calculated highest occupied molecular orbital (HOMO), and the lowest unoccupied
molecular orbital (LUMO) gap of the isomers implied that the gap depends on the
symmetrical geometry of the isomer. Furthermore, it was evident that the most
stable isomers are accompanied with larger gaps. The HOMO-LUMO graphs
demonstrated that HOMO orbitals were localized around the selenium atom, while
LUMO orbitals were distributed around both cadmium and selenium atoms. The
calculated absorption spectrum was unique for each isomer. The absorption edges
for the isomers are ranging from 2.53 to 3.73 eV. The results show that the
obtained absorption spectra peaks’ values (nm) are smaller compared to CdSe
experimental results. (CdSe)2 clusters are very active that they
straightforwardly react to produce larger clusters. Finally, the results of
this study corroborate with previous computational studies.
Keywords: Cluster; dimer cadmium selenide;
geometry optimization; isomer; rhombus structure
ABSTRAK
Keunggulan
sifat semikonduktur kadmium selenida (CdSe) menjadikannya memiliki pelbagai
aplikasi dalam bidang elektronik. Meskipun kelompok (CdSe)2 mempunyai
lebih daripada satu isomer, namun kajian sebelum ini hanya melaporkan satu
isomer sahaja. Tujuan kajian ini dijalankan adalah untuk menentukan
kepelbagaian isomer geometri kelompok (CdSe)2, disamping sifat
struktur, elektronik dan pencirian sifat optik ditentukan menggunakan teori
fungsian ketumpatan (DFT). Pertama pengiraan pengoptimumam sifat geometri
ditentukan menggunakan algoritma Broyden-Fletcher-Geodecker-Shannov(BFGS).
Jumlah tenaga keadaan dasar menunjukkan kebarangkalian setiap isomer wujud
dalam kajian beruji kaji adalah tinggi, namun bergantung kepada jenis uji kaji
yang dijalankan. Sejumlah sebelas daripada dua puluh struktur geometri awal
yang dikaji telah berjaya. Manakala semua struktur geometri tersebut
menunjukkan keadaan di satah 2D. Keputusan menunjukkan enam daripada sebelas
struktur tersebut telah dilaporkan dalam keputusan kajian yang lepas, manakala
tiga selebihnya belum dilaporkan sebelum ini. Struktur rombus memberikan
keadaan struktur isomer yang paling stabil diikuti dengan struktur trapezoidal
(CdSe)2. Panjang ikatan isomer antara Cd-Se adalah 2.5-2.74 Å dan
purata sudut antara Cd-Se-Cd serta Se-Cd-Se adalah 64.5o-123o dan 56.3°-114.2°. Tambahan pula, sudut ikatan menunjukkan elektron yang tidak
terikat pada atom selenium memainkan peranan mengubah struktur isomer daripada
bersifat struktur linear. Jumlah perbezaan jurang nilai tenaga dalam keadaan
dasar adalah sekitar 0.00-1.82 eV. Penentuan nilai jarak antara tenaga molekul
orbit yang dihuni (HOMO) dan molekul orbit yang tidak dihuni (LUMO) bergantung
kepada sifat geometri isomer yang bersimetri. Keputusan kajian menunjukkan
isomer yang paling stabil mempunyai nilai jurang tenaga yang lebih besar. Graf
taburan elektron menunjukkan orbit HOMO tertumpu di sekitar atom selenium,
sementara orbit LUMO terletak di sekitar atom kadmium dan selenium. Spektrum
serapan bagi setiap isomer adalah unik antara satu sama lain. Nilai tenaga
serapan bermula sekitar 2.53 hingga 3.73 eV. Hasil kajian menunjukkan nilai
tenaga pada puncak serapan adalah rendah sedikit berbanding kajian yang
dilaporkan dalam kajian CdSe secara uji kaji disebabkan kelompok (CdSe)2 amat reaktif sehingga membentuk kelompok yang lebih besar. Kesimpulannya,
keputusan kajian semasa memberi nilai sokongan kepada keputusan kajian
komputasi yang lepas.
Kata
kunci: Isomer; kadmium selenida dimer; kelompok; pengoptimum geometri; struktur
rombus
RUJUKAN
Alivisatos, P. 2003. The use of
nanocrystals in biological detection. Nature
Biotechnology 22: 47-52.
Andrade, X., Strubbe, D., De Giovannini,
U., Larsen, A.H., Oliveira, M.J.T., Alberdi-Rodriguez, J., Varas, A.,
Theophilou, I., Helbig, N., Verstraete, M.J., Stella, L., Nogueira, F.,
Aspuru-Guzik, A., Castro, A., Marques, M.A.L. & Rubio, A. 2015. Real-space
grids and the Octopus code as tools for the development of new simulation
approaches for electronic systems. Physical
Chemistry Chemical Physics 17(47): 31371-31396.
Atchison, J.S. & Schauer, C.L. 2011.
Fabrication and characterization of electrospun semiconductor nanoparticle -
Polyelectrolyte ultra-fine fiber composites for sensing applications. Sensors (Basel, Switzerland) 11(11):
10372-10387.
Azpiroz, J.M., Matxain, J.M., Infante, I.,
Lopez, X. & Ugalde, J.M. 2013. A DFT/TDDFT study on the optoelectronic
properties of the amine-capped magic (CdSe)13 nanocluster. Physical Chemistry Chemical Physics 15(26): 10996-11005.
Bhattacharya, S.K. & Kshirsagar, A.
2007. Ab initio calculations of
structural and electronic properties of CdTe clusters. Physical Review B 75(3): 035402.
Brioude, A., Bellessa, J., Rabaste, S.,
Champagnon, B., Sphanel, L., Mugnier, J. & Plenet, J.C. 2004. Resonant
Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals
embedded in thin SiO2 films. Journal
of Applied Physics 95(5): 2744-2748.
Burnin, A., Sanville, E. & BelBruno,
J.J. 2005. Experimental and computational study of the ZnnSn and ZnnSn+
Clusters. The Journal of Physical
Chemistry A 109(23): 5026-5034.
Casida, M.E., Jamorski, C., Casida, K.C.
& Salahub, D.R. 1998. Molecular excitation energies to high-lying bound
states from time-dependent density-functional response theory: Characterization
and correction of the time-dependent local density approximation ionization
threshold. The Journal of Chemical
Physics 108(11): 4439-4449.
Chen, O., Zhao, J., Chauhan, V.P., Cui,
J., Wong, C., Harris, D.K., Wei, H., Han, H.S., Fukumura, D., Jain, R.K. &
Bawendi, M.G. 2013. Compact high-quality CdSe–CdS core–shell nanocrystals with
narrow emission linewidths and suppressed blinking. Nature Materials 12: 445-451.
Cossairt, B.M. & Owen, J.S. 2011. CdSe
clusters: At the interface of small molecules and quantum dots. Chemistry of Materials 23(12):
3114-3119.
Cui, Y., Lou, Z., Wang, X., Yu, S. &
Yang, M. 2015. A study of optical absorption of cysteine-capped CdSe
nanoclusters using first-principles calculations. Physical Chemistry Chemical Physics 17(14): 9222-9230.
Deglmann, P., Ahlrichs, R. &
Tsereteli, K. 2002. Theoretical studies of ligand-free cadmium selenide and
related semiconductor clusters. The
Journal of Chemical Physics 116(4): 1585-1597.
Dolai, S., Dass, A. & Sardar, R. 2013.
Photophysical and redox properties of molecule-like CdSe nanoclusters. Langmuir 29(20): 6187-6193.
Dukes, A.D., McBride, J.R. &
Rosenthal, S.J. 2010. Synthesis of magic-sized CdSe and CdTe nanocrystals with
diisooctylphosphinic acid. Chemistry of
Materials 22(23): 6402-6408.
Farrow, M.R., Chow, Y. & Woodley, S.M.
2014. Structure prediction of nanoclusters; A direct or a pre-screened search
on the DFT energy landscape? Physical
Chemistry Chemical Physics 16(39): 21119-21134.
Goedecker, S., Teter, M. & Hutter, J.
1996. Separable dual-space Gaussian pseudopotentials. Physical Review B 54(3): 1703-1710.
Gonze, X., Jollet, F., Abreu Araujo, F.,
Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.M., Bieder, J.,
Bokhanchuk, A., Bousquet, E., Bruneval, F., Caliste, D., Côté, M., Dahm, F., Da
Pieve, F., Delaveau, M., Di Gennaro, M., Dorado, B., Espejo, C., Geneste, G.,
Genovese, L., Gerossier, A., Giantomassi, M., Gillet, Y., Hamann, D.R., He, L.,
Jomard, G., Laflamme Janssen, J., Le Roux, S., Levitt, A., Lherbier, A., Liu,
F., Lukačević, I., Martin, A., Martins, C., Oliveira, M.J.T., Poncé,
S., Pouillon, Y., Rangel, T., Rignanese, G.M., Romero, A.H., Rousseau, B.,
Rubel, O., Shukri, A.A., Stankovski, M., Torrent, M., Van Setten, M.J., Van
Troeye, B., Verstraete, M.J., Waroquiers, D., Wiktor, J., Xu, B., Zhou, A.
& Zwanziger, J.W. 2016. Recent developments in the ABINIT software package. Computer Physics Communications 205:
106-131.
Gutsev, L.G., Dalal, N.S., Ramachandran,
B.R., Weatherford, C.A. & Gutsev, G.L. 2015. Spectral signatures of
semiconductor clusters: (CdSe)16 isomers. Chemical
Physics Letters 636: 121-128.
Jose, R., Zhanpeisov, N.U., Fukumura, H.,
Baba, Y. & Ishikawa, M. 2006. Structure−property correlation of CdSe
clusters using experimental results and first-principles DFT calculations. Journal of the American Chemical Society 128(2): 629-636.
Joswig, J.O., Roy, S., Sarkar, P. &
Springborg, M. 2002. Stability and bandgap of semiconductor clusters. Chemical Physics Letters 365(1): 75-81.
Karamanis, P., Maroulis, G. & Pouchan,
C. 2006a. Basis set and electron correlation effects in all-electron ab initio calculations of the static
dipole polarizability of small cadmium selenide clusters, (CdSe)n, n=1,2,3,4. Chemical Physics 331(1): 19-25.
Karamanis, P., Maroulis, G. & Pouchan,
C. 2006b. Molecular geometry and polarizability of small cadmium selenide
clusters from all-electron ab initio and density functional theory calculations. The
Journal of Chemical Physics 124(7): 071101.
Kasuya, A., Sivamohan, R., Barnakov, Y.A.,
Dmitruk, I.M., Nirasawa, T., Romanyuk, V.R., Kumar, V., Mamykin, S.V., Tohji,
K., Jeyadevan, B., Shinoda, K., Kudo, T., Terasaki, O., Liu, Z.R., Belosludov,
V., Sundararajan, V. & Kawazoe, Y. 2004. Ultra-stable nanoparticles of CdSe
revealed from mass spectrometry. Nature
Materials 3: 99-102.
Kilina, S., Kilin, D. & Tretiak, S.
2015. Light-driven and phonon-assisted dynamics in organic and semiconductor
nanostructures. Chemical Reviews 115(12): 5929-5978.
Kim, T.H., Cho, K.S., Lee, E.K., Lee,
S.J., Chae, J., Kim, J.W., Kim, D.H., Kwon, J.Y., Amaratunga, G., Lee, S.Y.,
Choi, B.L., Kuk, Y., Kim, J.M. & Kim, K. 2011. Full-colour quantum dot
displays fabricated by transfer printing. Nature
Photonics 5: 176-182.
Kisslinger, R., Hua, W. & Shankar, K.
2017. Bulk heterojunction solar cells based on blends of conjugated polymers
with ii–vi and iv–vi inorganic semiconductor quantum dots. Polymers 9(2): 35.
Kolobkova, E.V., Kukushkin, D.S.,
Nikonorov, N.V., Sidorov, A.I. & Shakhverdov, T.A. 2015. Luminescent
properties of fluorophosphate glasses with molecular cadmium selenide clusters. Optics and Spectroscopy 118(2):
224-228.
Kuçur, E., Ziegler, J. & Nann, T.
2008. Synthesis and spectroscopic characterization of fluorescent blue-emitting
ultrastable CdSe clusters. Small 4(7): 883-887.
Kudera, S., Zanella, M., Giannini, C.,
Rizzo, A., Li, Y., Gigli, G., Cingolani, R., Ciccarella, G., Spahl, W., Parak,
W.J. & Manna, L. 2007. Sequential growth of magic-size CdSe nanocrystals. Advanced Materials 19(4): 548-552.
Lee, S.R., Kim, D.S. & Choi, S.H.
2017. The conjugated phenylene polymer-modified photoanodes for quantum
dot-sensitized solar cells. Journal of
Nanomaterials 2017: Article ID. 9048279.
Liu, Y.H., Wang,
F., Wang, Y., Gibbons, P.C. & Buhro, W.E. 2011. Lamellar assembly of
cadmium selenide nanoclusters into quantum belts. Journal of the American Chemical Society 133(42): 17005-17013.
Majdabadi, A., Gaeeni, M.R., Ghamsari,
M.S. & Majles-Ara, M.H. 2015. Investigation of stability and nonlinear
optical properties CdSe colloidal nanocrystals. Journal of Laser Applications 27(2): 022010.
Matxain, J.M., Mercero, J.M., Fowler, J.E.
& Ugalde, J.M. 2004. Clusters of II−VI materials: CdiXi,
X = S, Se, Te, i ≤ 16. The Journal
of Physical Chemistry A 108(47): 10502-10508.
Matxain, J.M.,
Mercero, J.M., Fowler, J.E. & Ugalde, J.M. 2001. Small clusters of
group-(II-VI) materials: Zni Xi, X=Se,Te, i=1–9. Physical Review A 64(5): 053201.
Nguyen, K.A., Pachter, R. & Day, P.N.
2013. Computational prediction of structures and optical excitations for
nanoscale ultrasmall ZnS and CdSe clusters. Journal
of Chemical Theory and Computation 9(8): 3581-3596.
Ouyang, J., Zaman, M.B., Yan, F.J.,
Johnston, D., Li, G., Wu, X., Leek, D., Ratcliffe, C.I., Ripmeester, J.A. &
Yu, K. 2008. Multiple families of magic-sized CdSe nanocrystals with strong
bandgap photoluminescence via noninjection one-pot syntheses. The Journal of Physical Chemistry C 112(36): 13805-13811.
Peng, Z.A. & Peng, X. 2002. Nearly
monodisperse and shape-controlled CdSe nanocrystals via alternative
routes: Nucleation and growth. Journal
of the American Chemical Society 124(13): 3343-3353.
Perdew, J.P. & Zunger, A. 1981.
Self-interaction correction to density-functional approximations for many-electron
systems. Physical Review B 23(10):
5048-5079.
Peterson, K.A., Shepler, B.C. &
Singleton, J.M. 2007. The group 12 metal chalcogenides: An accurate
multireference configuration interaction and coupled cluster study. Molecular Physics 105(9): 1139-1155.
Renner, J., Worschech, L., Forchel, A.,
Mahapatra, S. & Brunner, K. 2006. CdSe quantum dot microdisk laser. Applied Physics Letters 89(23): 231104.
Riehle, F.S., Bienert, R., Thomann, R.,
Urban, G.A. & Krüger, M. 2009. Blue luminescence and superstructures from
magic size clusters of CdSe. Nano Letters 9(2): 514-518.
Sanville, E., Burnin, A. & BelBruno,
J.J. 2006. Experimental and computational study of small (n = 1−16)
stoichiometric zinc and cadmium chalcogenide clusters. The Journal of Physical Chemistry A 110(7): 2378-2386.
Sathyamoorthy, R., Manjuladevi, V.,
Sudhagar, P., Senthilarasu, S. & Pal, U. 2007. Surfactant-assisted
room-temperature synthesis of CdSe nanoclusters. Materials Chemistry and Physics 105(1): 20-24.
Schreuder, M.A., Xiao, K., Ivanov, I.N.,
Weiss, S.M. & Rosenthal, S.J. 2010. White light-emitting diodes based on
ultrasmall CdSe nanocrystal electroluminescence. Nano Letters 10(2): 573-576.
Sen, S. & Chakrabarti, S. 2006.
Frequency-dependent nonlinear optical properties of CdSe clusters. Physical Review B 74(20): 205435.
Sheppard, D., Terrell, R. & Henkelman,
G. 2008. Optimization methods for finding minimum energy paths. The Journal of Chemical Physics 128(13):
134106.
Stinner, F.S., Lai, Y., Straus, D.B.,
Diroll, B.T., Kim, D.K., Murray, C.B. & Kagan, C.R. 2015. Flexible,
high-speed CdSe nanocrystal integrated circuits. Nano Letters 15(10): 7155-7160.
Tao, Z., Huang, Y., Liu, X., Chen, J.,
Lei, W., Wang, X., Pan, L., Pan, J., Huang, Q. & Zhang, Z. 2016.
High-performance photo-modulated thin-film transistor based on quantum
dots/reduced graphene oxide fragment-decorated ZnO nanowires. Nano-Micro Letters 8(3): 247-253.
Troparevsky, M.C. & Chelikowsky, J.R.
2000. Structural and electronic properties of CdS and CdSe clusters. The Journal of Chemical Physics 114(2):
943-949.
Troparevsky, M.C., Kronik, L. &
Chelikowsky, J.R. 2001. Ab initio absorption spectra of CdSe clusters. Physical
Review B 65(3): 033311.
Troullier, N. & Martins, J.L. 1991.
Efficient pseudopotentials for plane-wave calculations. Physical Review B 43(3): 1993-2006.
Wang, H., Tashiro, A., Nakamura, H.,
Uehara, M., Miyazaki, M., Watari, T. & Maeda, H. 2004. Synthesis of CdSe
magic-sized nanocluster and its effect on nanocrystal preparation in a
microfluidic reactor. Journal of
Materials Research 19(11): 3157-3161.
Wu, S., Liu, H., Liu, H., Wu, Z., Du, Z.
& Schelly, Z.A. 2007. Synthesis and bandgap variation of molecular-size
CdSe clusters via electroporation of vesicles. Nanotechnology 18(48): 485607.
Xia, Y.S. & Zhu, C.Q. 2008. Aqueous
synthesis of luminescent magic sized CdSe nanoclusters. Materials Letters 62(14): 2103-2105.
Yang, P., Tretiak, S., Masunov, A.E. &
Ivanov, S. 2008. Quantum chemistry of the minimal CdSe clusters. The Journal of Chemical Physics 129(7):
074709.
Yu-Zhang, K., Guo, D.Z., Mallet, J.,
Molinari, M., Loualiche, A. & Troyon, M. 2008. Electrodeposition and
characterization of CdSe semiconducting nanowires. Journal of Nanoscience and Nanotechnology 8(4): 2022-2028.
Yu, P. & Cardona, M. 2010. Fundamentals
of Semiconductors. Berlin Heidelberg, Springer-Verlag Berlin Heidelberg.
*Pengarang untuk surat-menyurat; email: n.salameh111@gmail.com
|