Sains Malaysiana 49(7)(2020): 1509-1520
http://dx.doi.org/10.17576/jsm-2020-4907-04
Estimation of Earth Structure by Satellite Gravity Analysis of
Peninsular Malaysia
(Anggaran Struktur Bumi melalui Analisis Graviti Satelit di Semenanjung
Malaysia)
NURUL FAIRUZ DIYANA BAHRUDIN1,2*,
UMAR HAMZAH1 & WAN ZUHAIRI WAN YACCOB1
1Geology Programme, School of Environmental Sciences
and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi Selangor Darul Ehsan, Malaysia
2Environmental Tracer Application Group Waste, Technology
and Environmental Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Diserahkan: 31 Mei 2019/Diterima: 8 Mac 2020
ABSTRACT
Power
spectral analysis was successfully carried out on satellite gravity data along
10 East-West profiles of about 140 to 320 km length across Peninsular Malaysia
beginning from its border with the Straits of Malacca towards the South China
Sea coastline. Power spectrum curves obtained clearly indicate the presence of
three major slopes corresponding to four type of materials with different
dominant densities. Depth curves computed from all these profiles produced
three major dominant peaks beginning with the deepest one at about 33 to 42 km,
followed by intermediate depth of 18 to 26 km and the shallowest peaks at about 3
to 10 km. The shallowest depth is interpreted as representing geological
formation such as the Mesozoic and Palaeozoic deposits including the granite
intrusion classified as basement. Underlying the basement is the upper crustal
material extending to Conrad discontinuity at depth of about 18 to 26 km. Earth
materials below the Conrad discontinuity constitutes of the lower crustal
material overlying the border of upper mantle at depth of 33 to 42 km
representing the Mohorovicic discontinuity.
Keywords: Earth
structures; satellite gravity data; spectral analysis
ABSTRAK
Analisis
kuasa spektrum telah dijalankan ke atas data graviti satelit sepanjang 10 garis
rentas timur-barat Semenanjung Malaysia. Panjang garis rentas berjulat antara
140 hingga 320 km. Lengkung kuasa spektrum menunjukkan kehadiran tiga kecerunan
utama yang mewakili empat bahan yang mempunyai ketumpatan yang berbeza.
Lengkung kedalaman yang diperoleh daripada kecerunan tersebut menghasilkan tiga
puncak dominan bermula daripada kedalaman maksimum 33 hingga 42 km diikuti
dengan kedalaman sederhana 18 hingga 26 km dan puncak paling cetek pada
kedalaman 3 hingga 10 km. Kedalaman
paling cetek ditafsirkan mewakili formasi geologi yang berusia Mesozoik dan
Paleozoik termasuk granit yang dikelaskan sebagai besmen. Lapisan besmen ini
menindih lapisan kerak atas yang didasari oleh satah ketakselarasan Conrad pada
kedalaman 18 hingga 26 km. Bahan bumi di bawah ketakselarasan Conrad terdiri
daripada kerak bawah yang menindih sempadan mantel atas pada kedalaman 33
hingga 42 km yang ditafsirkan sebagai satah ketakselarasan Mohorovicic.
Kata
kunci: Analisis kuasa spektrum; data graviti satelit; struktur bumi
RUJUKAN
Asano, S., Wada, K., Yoshii,
Y., Hayakawa, M., Misawa, Y., Moriya, T., Kanazawa, T., Murakami, H., Suzuki,
F., Kubota, R. & Suyehiro, K. 1985. Crustal structure in the northern part
of the Philippine Sea plate as derived from seismic observations of Hatoyama-off
Izu Peninsula explosions. Journal of
Physics of the Earth 33(3): 173-189.
Bai, Y., Williams, S.E., Muller, R.D., Liu, Z. & Hosseinpour, M.
2014. Mapping crustal thickness using marine gravity data: Methods and
uncertainties. Geophysics 79(2):
27-36.
Bansal. A.R. & Dimri, V.P.
2001. Depth estimation from the scaling power spectral density of nonstationary
gravity profile. Pure and Applied
Geophysics 158(4): 799-812.
Bhattacharyya, B.K. 1966.
Continuous spectrum of the total magnetic anomaly due to a rectangular
prismatic body. Geophysics 31(1):
97-121.
Dimitriadis, K., Tselentis,
G.A. & Thanassoulas, K. 1987. A basic program for 2-D spectral analysis of
gravity data and source-depth estimation. Computers
& Geosciences 13(5): 549-560.
Gomez-Ortiz, D. & Agarwal,
B.N.P. 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a
3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers & Geosciences 31(4):
513-520.
Iwasaki, T., Levin, V.,
Nikulin, A. & Idaka, T. 2013. Constraints on the Moho in Japan and
Kamchatka. Tectonophysics 609(2013):
184-201.
Kaila, K.L., Tewari, H.C.
& Mall, D.M. 1987. Crustal structure and delineation of Gondwana basin in
the Mahanadi delta area, India from deep seismic soundings. Journal of the Geological Society of India 29(3): 293-308.
Kieling, K., Roessler, D.
& Krueger, F. 2011. Receiver function study in Northern Sumatra and the
Malaysian Peninsula. Journal of
Seismology 15(2): 235-259.
Kivior, I., Boyd, D., Tucker,
D., Markham, S., Vaughan, F., Hagos, F. & Mellon, L. 2013. Deep crustal
structures interpreted from potential field data along the deep seismic
sounding transect across Olympic Dam, South Australia. ASEG Extended Abstracts 2013(1): 1-4.
Kumar, A., Roy, P.N.S. &
Das, L.K. 2016. Vertical density contrast and mapping of basement, Conrad and
Moho morphologies through 2D spectral analysis of gravity data in and around
Odisha, India. Journal of Asian Earth
Sciences 124(2016): 181-190.
Latiff, A.A.H. & Khalil, A.E. 2017. Crustal thickness of North-West
Peninsular Malaysia region inferred from receiver function analysis. Seventh International Conference on
Geotechnique, Construction Materials and Environment, Mie, Japan. pp. 1-6.
Loke, M.H., Lee, C.Y. &
van Klinken, G. 1983. Interpretation of regional gravity and magnetic data in
Peninsular Malaysia. Bulletin of the
Geological Society of Malaysia 16: 1-22.
Macpherson, K.A., Hidayat, D., Feng, L. & Goh, S.H. 2013. Crustal
thickness and velocity structure beneath Singapore's seismic network. Journal of Asian Earth Sciences 64(2013): 245-255.
Maden, N. Gelisli, K., Eyuboglu, Y. & Bekta, O. 2009. Determination
of tectonic and crustal structure of the Eastern Pontide orogenic belt (NE
Turkey) using gravity and magnetic data. Pure
and Applied Geophysics 166(12): 1987-2006.
Mishra, D.C. & Pedersen,
L.B. 1982. Statistical analysis of potential fields from subsurface reliefs. Geoexploration 19(4): 247-265.
Mooney, W.D., Laske, G. &
Masters, G. 1998. A new global crustal model at 5 × 5 degrees: CRUST5.1. Journal of Geophysical Research 103(B1):
727-747.
Prutkin, I. & Saleh, A.
2009. Gravity and magnetic data inversion for 3D topography of the Moho
discontinuity in the Northern Red Sea area, Egypt. Journal of Geodynamics 47(5): 237-245.
Ryall, P.J.C. 1982. Some
thoughts on the crustal structure of Peninsular Malaysia - results of a gravity
traverse. Bulletin of the Geological
Society of Malaysia 15: 9-18.
Singh. A., Singh, C. &
Kennett, B.L.N. 2015. A review of crust and upper mantle structure beneath the
Indian subcontinent. Tectonophysics 644-645: 1-21.
Spector, A. & Grant, F.S.
1970. Statistical model for the interpreting aeromagnetic data. Geophysics 35(2): 293-302.
Treitel, S., Clement, W.G.
& Kaul, R.K. 1971. The spectral determination of depths to buried magnetic
basement rocks. Geophysical Journal
International 24(4): 415-428.
Zhu, L. & Kanamori, H.
2000. Moho depth variation in Southern California from teleseismic receiver
functions. Journal of Geophysical
Research: Solid Earth 105(B2): 2969-2980.
*Pengarang
untuk surat-menyurat; email: nurulfairuz@nuclearmalaysia.gov.my
|