Sains Malaysiana 49(9)(2020): 2101-2111
http://dx.doi.org/10.17576/jsm-2020-4909-08
Sifat Mekanik dan Terma Nanokomposit Asid
Polilaktik/Cecair Getah Asli/Polianilina Diperkukuh Berpenguat Grafin pada
Kandungan Rendah
(Mechanical and Thermal Properties of
Toughened Polylactic Acid/Liquid Natural Rubber/Polyaniline Nanocomposites
Reinforced Graphene at Low Loading)
DALILA SHAHDAN1, RUEY SHAN CHEN1,2*
& SAHRIM AHMAD1,2
1Department of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Materials Science Programme, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 15 Januari 2020/Diterima:
15 April 2020
ABSTRAK
Kajian ini dijalankan bagi mengkaji kesan
penambahan bahan pengisi grafin berplat nano (GNP) ke atas sifat mekanik dan terma bagi nanokomposit
polilaktik asid (PLA)/cecair getah asli (LNR)/polianilina (PANI). Nanokomposit
PLA/LNR/PANI berpengisi GNP disediakan melalui kaedah adunan leburan dengan
menggunakan mesin pengadun dalaman. Tahap pengisian kandungan bahan pengisi GNP
dipelbagaikan daripada 0.2 sehingga 1.0 % bt.
Spesimen yang telah dicirikan melalui ujian mekanik serta analisis
termogravimetri (TGA), kalorimetri imbasan pembezaan (DSC) dan kekonduksian
terma (TCA) menunjukkan peningkatan sifat yang positif dengan penambahan GNP
pada kandungan rendah dalam matriks polimer. Keputusan sifat regangan, hentaman
dan kestabilan terma menyatakan kandungan optimum dicapai pada 0.4 % bt. Berdasarkan ujian lenturan dan TCA
pula, peningkatan optimum masing-masing didapati pada kandungan yang berbeza
iaitu 0.6 dan 0.8 % bt. GNP.
Kata kunci: Grafin
nanoplat; kekonduksian terma; kestabilan terma; komposit termoplastik
ABSTRACT
This
study was conducted to study the effect of adding graphene nanoplatelets (GNP)
nanofiller on the mechanical and thermal properties of polylactic acid
(PLA)/liquid natural rubber (LNR)/polyaniline (PANI) nanocomposite. The
PLA/LNR/PANI nanocomposites filled with GNP was prepared via melt blending
method using an internal mixer. The contents of the GNP fillers were varied
from 0.2 to 1.0 wt. %. Characterized
specimen through a series of test such as mechanical test, thermogravimetry
analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity analyzer (TCA)
showed positive properties improvement with the addition of GNP at low content
in the polymer matrix. The results of tensile, impact, and thermal stability properties
indicated the optimum content was achieved at 0.4 wt. %. Based on the flexural and the TCA tests, the optimum improvement was
obtained at 0.6 and 0.8 wt. % of
GNP, respectively.
Keywords:
Graphene nanoplatelets; thermoplastic composite; thermal conductivity; thermal
stability
RUJUKAN
Abdul Rahman, N.,
Easteal, A.J. & Travas-Sejdic, J. 2012. Electrospun nanofibres of PLA/PANI
and PLA/P (ANI-co-m-ABA): Thermal studies. Materials
Science Forum 700: 137-140.
Ahmad, S.H.,
Yahya, S.Y. & Rasid, R. 2011. Reinforced thermoplastic natural rubber
(TPNR) composites with different types of carbon nanotubes (MWNTS). Carbon
Nanotubes-Synthesis, Characterization, Applications. London: IntechOpen.
Arrieta, M.P., Castro-López, M.d.M., Rayón, E., Barral- Losada, L.F., López-Vilariño, J.M., López, J. & González- Rodríguez, M.V. 2014. Plasticized Poly(lactic acid)– Poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. Journal of Agricultural and Food Chemistry 62(41): 10170- 10180.
Bhadra,
S., Khastgir, D., Singha, N.K. & Lee, J.H. 2009. Progress in preparation,
processing and applications of polyaniline. Progress
in Polymer Science 34(8): 783-810.
Bi, T.
& Qiu, Z. 2020. Synthesis, thermal and mechanical properties of fully
biobased poly(butylene-co-propylene 2,5-furandicarboxylate) copolyesters with
low contents of propylene 2,5-furandicarboxylate units. Polymer 186: 122053.
Chen,
R.S. & Ahmad, S. 2017. Mechanical performance and flame retardancy of rice
husk/organoclay-reinforced blend of recycled plastics. Materials Chemistry and Physics 198: 57-65.
Chen,
R.S., Ab Ghani, M.H., Ahmad, S., Salleh, M.N. & Mou’ad, A.T. 2015. Rice
husk flour biocomposites based on recycled high-density polyethylene/polyethylene
terephthalate blend: Effect of high filler loading on physical, mechanical and
thermal properties. Journal of Composite
Materials 49(10): 1241-1253.
Galpaya,
D., Wang, M., Liu, M., Motta, N., Waclawik, E.R. & Yan, C. 2012. Recent
advances in fabrication and characterization of graphene-polymer
nanocomposites. Graphene 1(2): 30-49.
Gaska,
K., Kádár, R., Rybak, A., Siwek, A. & Gubanski, S. 2017. Gas barrier,
thermal, mechanical and rheological properties of highly aligned graphene-ldpe
nanocomposites. Polymers 9(7): 294.
Han, Z.
& Fina, A. 2011. Thermal conductivity of carbon nanotubes and their polymer
nanocomposites: A review. Progress in
Polymer Science 36(7): 914-944.
Hu, K.,
Kulkarni, D.D., Choi, I. & Tsukruk, V.V. 2014. Graphene-polymer
nanocomposites for structural and functional applications. Progress in Polymer Science 39(11): 1934-1972.
Huxtable,
S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M.,
Strano, M.S., Siddons, G., Shim, M. & Keblinski, P. 2003. Interfacial heat
flow in carbon nanotube suspensions. Nature
Materials 2: 731-734.
Jiang,
X. & Drzal, L.T. 2010. Multifunctional high density polyethylene
nanocomposites produced by incorporation of exfoliated graphite nanoplatelets
1: Morphology and mechanical properties. Polymer Composites 31(6):
1091-1098.
Kadiman,
N., Romli, J., Muhamad, N., Bakar, A. & Foudzi, F. 2018. Pengoptimuman
parameter sonikasi dan pengacauan magnetik bagi mendapatkan penyerakan sebati
komposit kuprum-grafin berdasarkan sifat morfologi. Sains Malaysiana 47(5): 1039-1043.
Kim,
H.S., Bae, H.S., Yu, J. & Kim, S.Y. 2016. Thermal conductivity of polymer
composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports 6: 26825.
Kim,
H., Abdala, A.A. & Macosko, C.W. 2010. Graphene/polymer nanocomposites. Macromolecules 43(16): 6515-6530.
King,
J.A., Via, M.D., Morrison, F.A., Wiese, K.R., Beach, E.A., Cieslinski, M.J.
& Bogucki, G.R. 2012. Characterization of exfoliated graphite
nanoplatelets/polycarbonate composites: Electrical and thermal conductivity,
and tensile, flexural, and rheological properties. Journal of Composite Materials 46(9): 1029-1039.
Margolin,
A.L. 2018. Effects of graphene on thermal oxidation of isotactic polypropylene. Polymer Degradation and Stability 156: 59-65.
Milani,
M.A., González, D., Quijada, R., Basso, N.R.S., Cerrada, M.L., Azambuja, D.S.
& Galland, G.B. 2013. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: Synthesis,
characterization and fundamental properties. Composites Science and Technology 84: 1-7.
Miltner,
H.E., Assche, G.V., Pozsgay, A., Pukánszky, B. & Mele, B.V. 2006.
Restricted chain segment mobility in poly(amide) 6/clay nanocomposites
evidenced by quasi-isothermal crystallization. Polymer 47(3): 826-835.
Murariu,
M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S. & Dubois, P. 2010.
New trends in polylactide (PLA)-based materials: “green” PLA - Calcium sulfate
(nano)composites tailored with flame retardant properties. Polymer Degradation and Stability 95(3): 374-381.
Papageorgiou,
D.G., Kinloch, I.A. & Young, R.J. 2015. Graphene/elastomer nanocomposites. Carbon 95: 460-484.
Paul,
M.A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A. & Dubois, P. 2003.
New nanocomposite materials based on plasticized poly(l-lactide) and
organo-modified montmorillonites: Thermal and morphological study. Polymer 44(2): 443-450.
Peng,
S., Zhu, P., Wu, Y., Mhaisalkar, S.G. & Ramakrishna, S. 2012. Electrospun
conductive polyaniline-polylactic acid composite nanofibers as counter
electrodes for rigid and flexible dye-sensitized solar cells. RSC Advances 2(2): 652-657.
Pinto,
A.M., Cabral, J., Tanaka, D.A.P., Mendes, A.M. & Magalhães, F.D. 2013a.
Effect of incorporation of graphene oxide and graphene nanoplatelets on
mechanical and gas permeability properties of poly(lactic acid) films. Polymer International 62(1): 33-40.
Pinto,
A.M., Moreira, S., Goncalves, I.C., Gama, F.M., Mendes, A.M. & Magalhaes,
F.D. 2013b. Biocompatibility of poly(lactic acid) with incorporated
graphene-based materials. Colloids Surf B
Biointerfaces 104: 229-238.
Rosli, N.A.,
Ahmad, I., Anuar, F.H. & Abdullah, I. 2016. Mechanical and thermal
properties of natural rubber-modified poly(lactic acid) compatibilized with
telechelic liquid natural rubber. Polymer
Testing 54: 196-202.
Saharudin,
M., Atif, R. & Inam, F. 2017. Effect of short-term water exposure on the
mechanical properties of halloysite nanotube-multi layer graphene reinforced
polyester nanocomposites. Polymers 9(1): 27.
Shahdan,
D., Ahmad, S.H. & Flaifel, M.H. 2013. Effect
of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite
nanocomposite. AIP Conference Proceedings 1571(1): 75-82.
Shah,
A.M., Kadir, M.R.A. & Razak, S.I.A. 2017. Novel PLA-based conductive
polymer composites for biomedical applications. JOM 69(12): 2838-2843.
Simmons,
H., Tiwary, P., Colwell, J. & Kontopoulou, M. 2019. Improvements in the
crystallinity and mechanical properties of PLA by nucleation and annealing. Polymer Degradation and Stability 166:
248-257.
Soundararajah,
Q.Y., Karunaratne, B.S.B. & Rajapakse, R.M.G. 2009. Montmorillonite
polyaniline nanocomposites: Preparation, characterization and investigation of
mechanical properties. Materials
Chemistry and Physics 113(2-3): 850-855.
Tarawneh, M.A., Ahmad, S.H.J., Zarina, K.A.K., Hassan, I.N., Jiun, Y.L., Flaifel, M.H. & Shamsul Bahri, A.R. 2013. Properties enhancement of TPNR-MWNTs-OMMT hybrid nanocomposites by using ultrasonic treatment. Sains Malaysiana 42(4): 503-507.
Teng,
C.C., Ma, C.C.M., Lu, C.H., Yang, S.Y., Lee, S.H., Hsiao, M.C., Yen, M.Y.,
Chiou, K.C. & Lee, T.M. 2011. Thermal conductivity and structure of
non-covalent functionalized graphene/epoxy composites. Carbon 49(15): 5107-5116.
Vadukumpully,
S., Paul, J., Mahanta, N. & Valiyaveettil, S. 2011. Flexible conductive
graphene/poly(vinyl chloride) composite thin films with high mechanical
strength and thermal stability. Carbon 49(1): 198-205.
Wang,
Q., Wang, Y., Meng, Q., Wang, T., Guo, W., Wu, G. & You, L. 2017.
Preparation of high antistatic HDPE/polyaniline encapsulated graphene
nanoplatelet composites by solution blending. RSC Advances 7(5): 2796-2803.
Xie,
X.L., Mai, Y.W. & Zhou, X.P. 2005. Dispersion and alignment of carbon
nanotubes in polymer matrix: A review. Materials
Science and Engineering: R: Reports 49(4): 89-112.
Yadav,
S.K. & Cho, J.W. 2013. Functionalized graphene nanoplatelets for enhanced
mechanical and thermal properties of polyurethane nanocomposites. Applied Surface Science 266: 360-367.
*Pengarang
untuk surat-menyurat; email: chen@ukm.edu.my
|