Sains
Malaysiana 49(9)(2020): 2211-2219
http://dx.doi.org/10.17576/jsm-2020-4909-18
Crushing Behaviour of Plain Weave
Composite Hexagonal Cellular Structure
(Sifat Penghancuran Struktur Sel Heksagon
Komposit Tenun Biasa)
M.F.M. ALKBIR1*,
FATIHHI JANUDDI1, ADNAN BAKI1, S.M.
SAPUAN2, M.S.E. KOSNAN1, S.B. MOHAMED3, M.S.
HAMUODA4 & A. ENDUT3
1Facilities Maintenance Engineering, UniKL
Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu,
Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia
2Department of Mechanical and Manufacturing
Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul
Ehsan, Malaysia
3Faculty of Innovative Design and Technology, Universiti
Sultan Zainal Abidin (UniSZA), 21300 Kuala Terengganu, Terengganu Darul Iman, Malaysia
4Department of Mechanical
and Industrial Engineering, College of Engineering, Qatar University, P.O. Box
2713, Doha, Qatar
Diserahkan:
15 Oktober 2019/Diterima: 15 Mei 2020
ABSTRACT
The
tradition of fibre composite materials in energy absorbing tube applications
has gained interest in structural collisions in the composite materials
industry. Thus, the subject of this work is the experimental
investigation to understand the effects of the failure initiator at the
specimen’s edge, causing the increase in the specific absorbed energy (SEA), as
well as the influence of the cellular structure composed of cells with
small hexagonal angle exhibited high energy absorption capability. An extensive
experimental investigation of an in plane crashing behavior of the composite
hexagonal cellular structure between platen has been carried out. The cellular
structure composed of hexagonal cells with angles varying between 45 and
60°. The materials used to accomplish the study are the plain weave E-glass
fabric as a reinforcement and the epoxy resin system as a matrix. Furthermore,
the specific energy absorption increases as the hexagonal angle increases.
Keywords: Composite; crushing behavior; hexagonal cellular
structure; plain weave
ABSTRAK
Penggunaan bahan komposit fiber
secara tradisi dalam tiub penyerapan tenaga telah mendapat perhatian dalam
pelanggaran struktur dalam industri bahan komposit. Oleh itu, subjek kajian ini
adalah untuk mengkaji kesan kegagalan pemula pada tepi spesimen, menyebabkan
peningkatan pada penyerapan tenaga tertentu (SEA) dan juga pengaruh daripada
struktur sel yang terdiri daripada sel dengan sudut heksagon kecil menunjukkan
keupayaan penyerapan tenaga yang tinggi. Kajian menyeluruh berkenaan sifat
penghancuran satah daripada struktur komposit sel heksagon telah dijalankan.
Struktur sel terdiri daripada sel heksagon dengan sudut berubah antara 45 dan
60°. Bahan yang digunakan untuk melengkapkan kajian ini adalah fabrik E-kaca
tenun biasa sebagai bahan diperkuat dan sistem resin epoksi sebagai matriks.
Selain itu, penyerapan tenaga tertentu meningkat apabila sudut heksagon
meningkat.
Kata kunci: Komposit; sifat
penghancuran; struktur sel heksagon; tenun biasa
RUJUKAN
Abdewi, E.F., Sulaiman, S., Hamouda, A.M.S. & Mahdi, E. 2006. Effect
of geometry on the crushing behaviour of laminated corrugated composite tubes. Journal
of Materials Processing Technology 172(3): 394-399.
Alkbir, M.F.A.
& Ishak, M.R. 2016a. Lateral crushing properties of non-woven kenaf
(mat)-reinforced epoxy composite hexagonal tubes. International Journal of
Precision Engineering and Manufacturing 17(7):
965-972.
Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A. & Ishak, M.R. 2016b. The
effect of fiber content on the crashworthiness parameters of natural kenaf
fiber-reinforced hexagonal composite tubes. Journal of Engineered Fibers and
Fabrics 11(1): 75-86.
Bergmann, T.,
Heimbs, S. & Maier, M. 2015. Mechanical properties and energy absorption
capability of woven fabric composites under±45 off-axis tension. Composite
Structures 125: 362-373.
Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K.
& Azhari, C.H. 2013. Effect of trigger configuration on the crashworthiness
characteristics of natural silk epoxy composite tubes. Composite Part B:
Engineering 55(1): 5-10.
Esnaola, A.,
Ulacia, I., Aretxabaleta, L., Aurrekoetxea, J. & Gallego, I. 2015. Quasi-static crush energy absorption
capability of E-glass/polyester and hybrid E-glass-basalt/polyester composite
structures. Materials & Design 76: 18-25.
Elgalai, A.M.,
Mahdi, E., Hamouda, A.M.S. & Sahari, B.S. 2004. Crushing response of
composite corrugated tubes to quasi-static axial loading. Composite
Structures 66(1-4): 665-671.
Kalhor, R. & Case, S.W. 2015. The effect of FRP thickness on energy
absorption of metal-FRP square tubes subjected to axial compressive loading. Composite
Structures 130: 44-50.
Luo, H., Yan, Y., Meng, X. & Jin, C. 2016. Progressive failure
analysis and energy-absorbing experiment of composite tubes under axial dynamic
impact. Composite Part B: Engineering 87: 1-11.
Ma, Y., Sugahara,
T., Yang, Y. & Hamada, H. 2015. A study on the energy absorption properties
of carbon/aramid fiber filament winding composite tube. Composite Structures 123: 301-311.
Misri, S., Sapuan,
S.M., Leman, Z. & Ishak, M.R. 2015. Torsional behaviour of filament wound
kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Materials
& Design 65: 953-960.
Oshkovr, S.A., Eshkoor, R.A., Taher, S.T., Ariffin, A.K. & Azhari,
C.H. 2012. Crashworthiness characteristics investigation of silk/epoxy
composite square tubes. Composite Structures 94(8): 2337-2342.
Othman, A.,
Abdullah, S., Ariffin, A.K. & Mohamed, N.A.N. 2014. Investigating the
quasi-static axial crushing behavior of polymeric foam-filled composite
pultrusion square tubes. Materials & Design 63: 446-459.
Siromani, D.,
Henderson, G., Mikita, D., Mirarchi, K., Park, R., Smolko, J., Awerbuch, J.
& Tan, T.M. 2014. An experimental study on the effect of failure trigger
mechanisms on the energy absorption capability of CFRP tubes under axial
compression. Composites Part A: Applied Science and Manufacturing 64:
25-35.
Tarlochan, F.,
Ramesh, S. & Harpreet, S. 2012. Advanced composite sandwich structure
design for energy absorption applications: Blast protection and
crashworthiness. Composite Part B: Engineering 43(5): 2198-2208.
Wang, L., Liu, W.,
Fang, Y., Wan, L. & Huo, R. 2016. Axial crush behavior and energy
absorption capability of foam-filled GFRP tubes manufactured through vacuum
assisted resin infusion process. Thin-Walled Structures 98: 263-273.
Xu, J., Ma, Y.,
Zhang, Q., Sugahara, T., Yang, Y. & Hamada, H. 2016. Crashworthiness of
carbon fiber hybrid composite tubes molded by filament winding. Composite
Structures 139: 130-140.
Yan, L., Chouw, N.
& Jayaraman, K. 2014a. Effect of triggering and polyurethane foam-filler on
axial crushing of natural flax/epoxy composite tubes. Materials & Design 56: 528-541.
Yan, L., Chouw, N.
& Jayaraman, K. 2014b. Lateral crushing of empty and polyurethane-foam
filled natural flax fabric reinforced epoxy composite tubes. Composite Part
B: Engineering 63: 15-26.
*Pengarang untuk surat-menyurat; email: munir@unikl.edu.my
|