Sains Malaysiana 52(6)(2023): 1759-1770

http://doi.org/10.17576/jsm-2023-5206-12

 

Methods of Evaluating Adaptation and Accuracy of Additive Manufactured Removable Partial Dentures: A Scoping Review

(Kaedah Menilai Penyesuaian dan Ketepatan Penghasilan Aditif Gigi Palsu Sebahagian Boleh Tanggal: Suatu Kajian Mengskop)

 

SAFA ELHADERY1, NORLELA YACOB2, SYARIDA HASNUR SAFII1, NORLIZA IBRAHIM3, ZUBAIDAH ZANUL ABIDIN1 & NOSIZANA MOHD SALLEH1*

 

1Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia

2Department of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), 71800, Nilai, Negeri Sembilan, Malaysia

3Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 11 Januari 2023/Diterima: 13 Jun 2023

 

Abstract

This study aimed to provide a comprehensive review of various recent methods that can be used to assess the fit and accuracy of additive-manufactured removable partial dentures (RPDs), focusing on 3D-printed RPDs. An electronic search of the English language literature from January 2000 to February 2022 was performed using four databases: Medline/PubMed, Scopus, Web of Science, and EBSCOhost, using relevant keywords. The parameters of interest were extracted and tabulated. Of 936 retrieved studies, 26 studies were included. Most of the studies were laboratory studies, conducted between 2011 and 2022, did not include control group, used stone cast model as reference, used direct 3D printing method, and polished the final RPD framework. Methods of assessment can be divided into two categories: 1) qualitative assessment which is based mainly on visual inspection or tactile sense, and 2) quantitative assessment which includes optical assessment (with or without a registration material) and computerized assessment based on surface-matching software programs. In conclusion, computerized assessment using different surface matching software provides more accurate and precise quantitative assessment of denture fit and allows researcher and practitioner to detect minute dimensional changes that cannot be detected visually.

 

Keywords: Accuracy; digital dentistry; fit; removable partial dentures; trueness; 3D-printing

 

Abstrak

Penyelidikan ini bertujuan membuat tinjauan menyeluruh tentang kaedah yang digunakan untuk menilai padanan dan ketepatan gigi palsu sebahagian (RPD) memfokuskan kepada dentur yang dihasilkan secara cetakan 3D. Pencarian kepustakaan elektronik berbahasa Inggeris dari Januari 2000 hingga Februari 2022 dilakukan menggunakan empat pangkalan data: Medline/PubMed, Scopus, Web of Science dan EBSCOhost menggunakan kata kunci yang berkaitan. Beberapa parameter telah dinilai dan dijadualkan. Daripada 936 kajian yang dijumpai, hanya 26 kajian dipilih. Sebahagian besar adalah kajian makmal yang dijalankan di antara tahun 2011 dan 2022, tidak melibatkan kumpulan kawalan, menggunakan model tuangan sebagai rujukan, menggunakan kaedah cetakan 3D secara langsung dan menggilap kerangka RPD akhir. Kaedah penilaian dibahagi kepada dua kategori: 1) penilaian kualitatif yang menggunakan pemeriksaan secara visual atau sentuhan dan 2) penilaian kuantitatif termasuk secara optikal (menggunakan bahan registrasi atau tanpanya) dan penilaian secara berkomputer menggunakan program perisian padanan-permukaan. Kesimpulannya, penilaian secara berkomputer menggunakan program perisian padanan-permukaan memberi keputusan penilaian kuantitatif yang lebih tepat dan terperinci kepada padanan gigi palsu dan membolehkan pengkaji dan pengamal pergigian mengesan perubahan dimensi walaupun kecil yang tidak boleh dikesan oleh mata kasar.

 

Kata kunci: Cetakan 3D; gigi palsu sebahagian; ketepatan; padanan; pergigian digital

 

RUJUKAN

Academy of Prosthodontics. 1995. Principles, concepts, and practices in prosthodontics. J. Prosthet. Dent. 73(1): 73-94. doi: 10.1016/s0022-3913(05)80276-8

Ahmed, N., Abbasi, M.S., Haider, S., Ahmed, N., Habib, S.R., Altamash, S., Zafar, M.S. & Alam, M.K. 2021. Fit accuracy of removable partial denture frameworks fabricated with CAD/CAM, rapid prototyping, and conventional techniques: A systematic review. Biomed. Res. Int. 2021: 3194433. doi: 10.1155/2021/3194433

Al Mortadi, N., Alzoubi, K.H. & Williams, R. 2020. A scoping review on the accuracy of fit of removable partial dentures in a developing digital context. Clin. Cosmet. Investig. Dent. 12: 551-562. doi: 10.2147/ccide.S282300

Alharbi, N., Wismeijer, D. & Osman, R.B. 2017. Additive manufacturing techniques in prosthodontics: Where do we currently stand? A critical review. Int. J. Prosthodont. 30(5): 474-484. doi: 10.11607/ijp.5079

Alifui-Segbaya, F., Williams, R.J. & George, R. 2017. Additive manufacturing: A novel method for fabricating cobalt-chromium removable partial denture frameworks. Eur. J. Prosthodont. Restor. Dent. 25(2): 73-78. doi: 10.1922/EJPRD_1598Alifui-Segbaya06

Almufleh, B., Emami, E., Alageel, O., de Melo, F., Seng, F., Caron, E., Nader, S.A., Al-Hashedi, A., Albuquerque, R., Feine, J. & Tamimi, F. 2018. Patient satisfaction with laser-sintered removable partial dentures: A crossover pilot clinical trial. J. Prosthet. Dent. 119(4): 560-567.e1. doi: 10.1016/j.prosdent.2017.04.021

Arnold, C., Hey, J., Schweyen, R. & Setz, J.M. 2018. Accuracy of CAD-CAM-fabricated removable partial dentures. J. Prosthet. Dent. 119(4): 586-592. doi: 10.1016/j.prosdent.2017.04.017

Azari, A. & Nikzad, S. 2009. The evolution of rapid prototyping in dentistry: A review.  Rapid Prototyping Journal 15(3): 216-225. doi: 10.1108/13552540910961946

Baig, M.R., Tan, K.B. & Nicholls, J.I. 2010. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J. Prosthet. Dent. 104(4): 216-27. doi: 10.1016/s0022-3913(10)60128-x

Bajunaid, S.O., Altwaim, B., Alhassan, M. & Alammari, R. 2019. The fit accuracy of removable partial denture metal frameworks using conventional and 3D printed techniques: An in vitro study. J. Contemp. Dent. Pract. 20(4): 476-481.

Batalha, A.E.F. & Araújo, R.M. 2017. Development of removable partial dentures by using additive manufacture and casting processes. Archives of Materials Science and Engineering 87(1): 33-40.

Bibb, R., Eggbeer, D. & Williams, R. 2006. Rapid manufacture of removable partial denture frameworks. Rapid Prototyping Journal 12(2): 95-99. doi: 10.1108/13552540610652438

British Society for the Study of Prosthetic Dentistry. 1981. Guides to standards in prosthetic dentistry. A report by the British Society for the study of prosthetic dentistry. Br. Dent. J. 150(6): 167-169. doi: 10.1038/sj.bdj.4804565

Brudvik, J.S. & Reimers, D. 1992. The tooth-removable partial denture interface. J. Prosthet. Dent. 68(6): 924-927. doi: 10.1016/0022-3913(92)90552-l

Cabrita, J.P., Mendes, T.A., Martins, J.P. & Lopes, L.P. 2021. Removable partial denture metal framework manufactured by selective laser melting technology - A clinical report.  Revista Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial 62(2): 109-113.

Campbell, S.D., Cooper, L., Craddock, H., Hyde, T.P., Nattress, B., Pavitt, S.H. & Seymour, D.W. 2017. Removable partial dentures: The clinical need for innovation. J. Prosthet. Dent. 118(3): 273-280. doi: 10.1016/j.prosdent.2017.01.008

Carneiro Pereira, A.L., Martins de Aquino, L.M., Carvalho Porto de Freitas, R.F., Soares Paiva Tôrres, A.C. & da Fonte Porto Carreiro, A. 2019. CAD/CAM-fabricated removable partial dentures: A case report.  Int. J. Comput. Dent. 22(4): 371-379.

Chen, G.X. & Guang, K. 2012. Research of metallic part fabrication by selective laser melting.  Applied Mechanics and Materials 120: 284-287. doi: 10.4028/www.scientific.net/AMM.120.284

Chen, G.X., Zeng, X.Y., Wang, Z.M., Guan, K. & Peng, C.W. 2011. Fabrication of removable partial denture framework by selective laser melting. Advanced Materials Research 317-319: 174-178. doi: 10.4028/www.scientific.net/AMR.317-319.174

Chen, H., Li, H., Zhao, Y., Zhang, X., Wang, Y. & Lyu, P. 2019. Adaptation of removable partial denture frameworks fabricated by selective laser melting. J. Prosthet. Dent. 122(3): 316-324. doi: 10.1016/j.prosdent.2018.11.010

Dunham, D., Brudvik, J.S., Morris, W.J., Plummer, K.D. & Cameron, S.M. 2006. A clinical investigation of the fit of removable partial dental prosthesis clasp assemblies. J. Prosthet. Dent. 95(4): 323-326. doi: 10.1016/j.prosdent.2006.02.001

Eggbeer, D., Bibb, R. & Williams, R. 2005. The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proc. Inst. Mech. Eng. H. 219(3): 195-202. doi: 10.1243/095441105x9372

Fenlon, M.R., Juszczyk, A.S., Hughes, R.J., Walter, J.D. & Sherriff, M. 1993. Accuracy of fit of cobalt-chromium removable partial denture frameworks on master casts. Eur. J. Prosthodont. Restor. Dent. 1(3): 127-130.

Frank, R.P., Brudvik, J.S., Leroux, B., Milgrom, P. & Hawkins, N. 2000. Relationship between the standards of removable partial denture construction, clinical acceptability, and patient satisfaction. J. Prosthet. Dent. 83(5): 521-527. doi: 10.1016/s0022-3913(00)70008-4

Gan, N., Ruan, Y., Sun, J., Xiong, Y. & Jiao, T. 2018. Comparison of adaptation between the major connectors fabricated from intraoral digital impressions and extraoral digital impressions. Sci. Rep. 8(1): 529. doi: 10.1038/s41598-017-17839-4

Hodson, T.O. 2022. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions 15(14): 5481-5487.

Hu, F., Pei, Z. & Wen, Y. 2019. Using intraoral scanning technology for three-dimensional printing of Kennedy Class I removable partial denture metal framework: A clinical report. J. Prosthodont. 28(2): e473-e476. doi: 10.1111/jopr.12712

International Organization for Standardization. 1998. Accuracy (Trueness and Precision) of Measurement Methods and Results - Part 1: General Principles and Definitions - Technical Corrigendum 1. Geneva, Switzerland: International Organization for Standardization.

Kattadiyil, M.T., Mursic, Z., AlRumaih, H. & Goodacre, C.J. 2014. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J. Prosthet. Dent. 112(3): 444-448. doi: 10.1016/j.prosdent.2014.03.022

Lang, L.A. & Tulunoglu, I. 2014. A critically appraised topic review of computer-aided design/computer-aided machining of removable partial denture frameworks. Dent. Clin. North Am. 58(1): 247-255. doi: 10.1016/j.cden.2013.09.006

Lee, J.W., Park, J.M., Park, E.J., Heo, S.J., Koak, J.Y. & Kim, S.K. 2017. Accuracy of a digital removable partial denture fabricated by casting a rapid prototyped pattern: A clinical study. J. Prosthet. Dent. 118(4): 468-474. doi: 10.1016/j.prosdent.2016.12.007

Mai, H.Y., Mai, H.N., Kim, H.J., Lee, J. & Lee, D.H. 2022. Accuracy of removable partial denture metal frameworks fabricated by computer-aided design/computer-aided manufacturing method: A systematic review and meta-analysis. J. Evid. Based Dent. Pract. 22(3): 101681. doi: 10.1016/j.jebdp.2021.101681

Mendes, T.A., Marques, D., Lopes, L.P. & Caramês, J. 2019. Total digital workflow in the fabrication of a partial removable dental prostheses: A case report. SAGE Open Med. Case Rep. 7: 2050313x19871131. doi: 10.1177/2050313x19871131

Negm, E.E., Aboutaleb, F.A. & Alam-Eldein, A.M. 2019. Virtual evaluation of the accuracy of fit and trueness in maxillary poly(etheretherketone) removable partial denture frameworks fabricated by direct and indirect CAD/CAM techniques. J. Prosthodont. 28(7): 804-810. doi: 10.1111/jopr.13075

Oka, Y., Sasaki, J., Wakabayashi, K., Nakano, Y., Okamura, S.Y., Nakamura, T., Imazato, S. & Yatani, H. 2016. Fabrication of a radiopaque fit-testing material to evaluate the three-dimensional accuracy of dental prostheses. Dent. Mater. 32(7): 921-928. doi: 10.1016/j.dental.2016.03.011

Peng, P-W., Hsu, C-Y., Huang, H-Y., Chao, J-C. & Lee, W-F. 2020. Trueness of removable partial denture frameworks additively manufactured with selective laser melting. J. Prosthet. Dent. 127(1): 122-127.

Preshaw, P.M., Walls, A.W., Jakubovics, N.S., Moynihan, P.J., Jepson, N.J. & Loewy, Z. 2011. Association of removable partial denture use with oral and systemic health. J. Dent. 39(11): 711-719. doi: 10.1016/j.jdent.2011.08.018

Rudd, R.W. & Rudd, K.D. 2001. A review of 243 errors possible during the fabrication of a removable partial denture: Part I. J. Prosthet. Dent. 86(3): 251-261. doi: 10.1067/mpr.2001.118021

Soltanzadeh, P., Suprono, M.S., Kattadiyil, M.T., Goodacre, C. & Gregorius, W. 2019. An in vitro investigation of accuracy and fit of conventional and CAD/CAM removable partial denture frameworks. J. Prosthodont. 28(5): 547-555. doi: 10.1111/jopr.12997

Stern, M.A., Brudvik, J.S. & Frank, R.P. 1985. Clinical evaluation of removable partial denture rest seat adaptation. J. Prosthet. Dent. 53(5): 658-662. doi: 10.1016/0022-3913(85)90015-0

Takahashi, K., Torii, M., Nakata, T., Kawamura, N., Shimpo, H. & Ohkubo, C. 2020. Fitness accuracy and retentive forces of additive manufactured titanium clasp. Journal of Prosthodontic Research 64(4): 468-477.

Tasaka, A., Kato, Y., Odaka, K., Matsunaga, S., Goto, T.K., Abe, S. & Yamashita, S. 2019. Accuracy of clasps fabricated with three different CAD/CAM technologies: Casting, milling, and selective laser sintering. Int. J. Prosthodont. 32(6): 526-529. doi: 10.11607/ijp.6363

Tasaka, A., Shimizu, T., Kato, Y., Okano, H., Ida, Y., Higuchi, S. & Yamashita, S. 2020. Accuracy of removable partial denture framework fabricated by casting with a 3D printed pattern and selective laser sintering. Journal of Prosthodontic Research 64(2): 224-230.

Torabi, K., Farjood, E. & Hamedani, S. 2015. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J. Dent. (Shiraz) 16(1): 1-9.

Torii, M., Nakata, T., Takahashi, K., Kawamura, N., Shimpo, H. & Ohkubo, C. 2018. Fitness and retentive force of cobalt-chromium alloy clasps fabricated with repeated laser sintering and milling. J. Prosthodont. Res. 62(3): 342-346. doi: 10.1016/j.jpor.2018.01.001

Tregerman, I., Renne, W., Kelly, A. & Wilson, D. 2019. Evaluation of removable partial denture frameworks fabricated using 3 different techniques. J. Prosthet. Dent. 122(4): 390-395. doi: 10.1016/j.prosdent.2018.10.013

Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L., Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald, M.T., Langlois, E.V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö. & Straus, S.E. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 169(7): 467-473. doi: 10.7326/m18-0850

Williams, R.J., Bibb, R., Eggbeer, D. & Collis, J. 2006. Use of CAD/CAM technology to fabricate a removable partial denture framework. J. Prosthet. Dent. 96(2): 96-99. doi: 10.1016/j.prosdent.2006.05.029

Wu, J., Li, Y. & Zhang, Y. 2017. Use of intraoral scanning and 3-dimensional printing in the fabrication of a removable partial denture for a patient with limited mouth opening. J. Am. Dent. Assoc. 148(5): 338-341. doi: 10.1016/j.adaj.2017.01.022

Xie, W., Zheng, M., Wang, J. & Li, X. 2020. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps. J. Prosthet. Dent. 123(1): 163-172. doi: 10.1016/j.prosdent.2018.12.007

Ye, H., Ning, J., Li, M., Niu, L., Yang, J., Sun, Y. & Zhou, Y. 2017. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques. Int. J. Prosthodont. 30(4): 348-353. doi: 10.11607/ijp.5270

 

*Pengarang untuk surat-menyurat; email: nosizana@um.edu.my 

 

 

 

 

 

 

   

sebelumnya