Malaysian Journal of Analytical Sciences Vol 19 No 1 (2015): 144 – 154

 

 

 

Optimization of the in situ Epoxidation of linoleic acid of Jatropha curcas oil with performic acid

 

(Pengoptimuman Tindakbalas Pengepoksidaan in situ Asid Linoleik Minyak Jatropha curcas dengan Asid Performik)

 

Liew Kin Hong, Rahimi M. Yusop, Nadia Salih,  Jumat Salimon*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: jumat@ukm.edu.my

 

 

Abstract

The aim of this study is to optimise the epoxidation of linoleic acid of Jatropha curcas oil. This experiment was carried out with performic acid generated in situ by using hydrogen peroxide and formic acid. The method was evaluated on different parameters such as reaction temperature, mole ratios of formic acid to ethylenic unsaturation and hydrogen peroxide to ethylenic unsaturation. The optimum relative conversion into oxirane (80.4%) and conversion of iodine (94.7%) was achieved with ~70 % yield at the condition of 45°C reaction temperature, formic acid to ethylenic unsaturation mole ratio of 2.0, hydrogen peroxide to ethylenic unsaturation mole ratio of 12.0 for 2 hours of reaction time. The epoxidized linoleic acid was characterized by using Fourier transform infrared (FTIR) spectroscopy and NMR analysis. The result was also found that the formations of an epoxide and oxirane ring cleavage were both occurred at the same time if low amount of hydrogen peroxide was used.

 

Keywords:  epoxidation, linoleic acid, Jatropha curcus oil, performic acid

 

Abstrak

Kajian pengoptimuman tindak balas pengepoksidaan asid linoleik minyak Jatropha curcas telah dilakukan. Tindak balas ini dijalankan menggunakan asid performik yang dijana secara in situ dengan menggunakan hidrogen peroksida dan asid formik. Kaedah ini telah dinilai dengan beberapa  jenis parameter seperti suhu tindak balas, nisbah mol asid formik kepada etilenik taktepu dan nisbah mol hidrogen peroksida kepada etilenik taktepu. Penukaran relatif optimum kepada oksirana (80.4%) dan penukaran relatif nilai iodin (94.7%) telah dicapai dengan ~ 70 % hasil pada keadaan suhu tindak balas 45°C, nisbah mol asid formik kepada etilenik taktepu 2.0, nisbah mol hidrogen peroksida kepada etilenik taktepu 12.0 pada masa tindak balas selama 2 jam. Asid linoleik terepoksida dicirikan dengan menggunakan spektroskopi inframerah transformasi Fourier (FTIR) dan analisis spektroskopi resonans magnet nukleus (NMR). Hasil kajian juga mendapati bahawa pembentukan gelang oksirana dan pembukaan gelang oksirana telah berlaku serentak pada masa yang sama jika amaun hidrogen peroksida yang rendah telah digunakan.

 

Kata Kunci: pengepoksidaan, asid linoleik, minyak Jatropha curcus, asid performik

 

References

1.       No, S.Y. (2011). Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renewable and Sustainable Energy Reviews, 15: 131–149.

2.       Miao, S.D., Wang P, Su Z.G. and Zhang S.P. (2014). Vegetable-oil based polymers as future polymeric biomaterials. Acta Biomaterialia, 10: 1692–1704.

3.       Banković-Ilić, I.B., Stojković, I.J., Stamenković, O.S., Veljkovic, V.B. and Hung, Y.T. (2014). Waste animal fats as  feedstocks for biodiesel production Renewable  and Sustainable Energy Reviews, 32: 238–254.

4.       Kontkanen, H., Rokka, S., Kemppinen, A., Miettinen, H., Hellström, J., Kruus, K., Marnila, P., Alatossava, T. and Korhonen, H. (2011). Enzymatic and physical modification of milk fat: A review. International Dairy Journal, 21: 3-13.

5.       Gan, L.H., Ooi, K.S., Goh, S.H., Gan, L.M. and Leong, Y.C. (1995). Epoxidized ester of palm olein as plasticizer for poly(vinyl choride). European Polymer Journal, 81(8): 719-724

6.       Joseph, R., Alex, R., Vinod, V.S., Premalatha, C.K. and Kuriakose, B. (2003). Studied on epoxidized rubber seed oil as Plastizizer for acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 89: 668-673.

7.       Chua, S.C., Xu, X.B. and Guo, Z. (2012). Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochemistry, 47: 1439–1451.

8.       Buisman, G.J.H., Overeem, A. and Cuperus, F.P. (1999). Synthesis of epoxidised novel fatty acids for use in paint application. Knothe G, Derksen JTP. Recent developments in the synthesis of fatty acid derivatives. AOCS Press, Champaign.

9.       Sharma, B.K., Adhvaryu, A., Liu, Z.S. and Erhan, S.Z. (2006). Chemical modification of vegetable oils for lubricants application. Journal of the American Oil Chemists' Society, 83: 129–136.

10.    Salimon, J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15: 195–201.

11.    Lathi, P.S. and Mattiasson, B. (2007). Green approach for the preparation of biodegradable lubricant base stock from epoxidised vegetable oil. Applied Catalysis B: Environmental, 69:207-212.

12.    Milchert, E. and Smagowicz, A. (2009). The influence of parameter on the epoxidation of rapeseed oil with peracetic acid. Journal of the American Oil Chemists' Society, 86:1227-1233.

13.    Meyer, P.P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. and Tongurai, C. (2008). Epoxidation of soybean and jatropha oil. Thammasat International Journal of Science and Technology, 13: 1-5.

14.    Goud, V.V., Pradhan, N.C. and Patwardhan, A.V. (2006). Epoxidation of Karanja (Pongamia glabra) oil by H2O2. Journal of the American Oil Chemists' Society, 83:635-640.

15.    Gound, V.V., Patwardhan, A.V. and Pradhan, N.C. (2005). Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology, 97:1365-1371.

16.    Dinda, S., Patwardhan, A.V., Goud, V.V. and Pradhan, N.C. (2008). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalyzed by liquid inorganic acids. Bioresource Technology, 99: 3737-3744.

17.    Mungroo, R., Pradhan, N.C., Goud, V.V. and Dalai, A.K. (2008). Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. Journal of the American Oil Chemists' Society, 85:887-896.

18.    Findley, T.W., Swern, D. and Scanlan, J.T. (1945). Epoxidation of unsaturated fatty materials with peracetic acid in glacial acetic acid solution. Journal of the American Oil Chemists' Society, 67:412–414.

19.    Daniel. L., Ardiyanti, A.R., Schuur, B., Manurung, R., Broekhuis, A.A. and Heeres, H.J. (2011). Synthesis and properties of highly branched Jatropha curcas L. oil derivatives. European Journal of Lipid Science and Technology, 113: 18–30.

20.    Gan, L.H., Goh, S.H. and Ooi, K.S. (1992). Kinetics studies of epoxidation and oxirane cleavage of palm olein methyl esters. Journal of the American Oil Chemists' Society, 69: 347–351.

21.    Petrovic, Z.S., Zlatanic, A., Lava, C.C. and Sinadinovic-fise, S. (2002). Epoxidation of soya bean oil in toluene with peroxoacetic acid and peroxoformic acids-kinetics and  side reactions. European Journal of Lipid Science and Technology, 104(5):293-299.

22.    American Oil Chemists’ Society. (1997). Oxirane Oxygen: AOCS Cd 9-57, Champaing,lL, 1-2.

23.    Campanella, A., Rustoy, E., Baldessari, A. and Baltanás, A. (2010). Lubricants from chemically modified vegetable oils. Bioresource Technology, 101: 245–254.

24.    Cai, S.F. and Wang, L.S. (2011). Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brřnsted Acidic Ionic Liquid as Catalyst. Chinese Journal of Chemical Engineering, 9(1): 57—63.

25.    Chua, S.C., Xu, X.B. and Guo, Z. (2012). Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochemistry, 47: 1439–1451.

26.    Vlcek, T. and Petrovic, Z.S. (2006). Optimization of the chemoenzymatic epoxidation of soybean oil. Journal of the American Oil Chemists' Society, 83:247–252.

 

 

Previous                    Content                    Next