Malaysian Journal of Analytical Sciences Vol 19 No 2 (2015): 291 – 299

 

 

 

Electrochemical Oxidation of Glycerol Using Gold Electrode

 

(Pengoksidaan Elektrokimia Gliserol Secara Elektrokimia Menggunakan Elektrod Emas)

 

Mohamed Rozali Othman* and Amirah Ahmad

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor

 

*Corresponding author: rozali@ukm.edu.my

 

 

Received: 30 June 2014; Accepted: 2 December 2014

 

 

Abstract

Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH- anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds.

 

Keywords: electrochemical oxidation, glycerol, carboxylic acid, phenolic compounds

 

Abstrak

Kaedah voltammetri kitaran, keupayaan linear V dan kronokuolometri telah dijalankan bagi mengetahui kelakuan elektrokimia sebatian gliserol pada elektrod emas. Kalium hidroksida dan asid sulfurik telah digunakan sebagai elektrolit bagi pengoksidaan elektrokimia sebatian organik tersebut. Selain elektrod kepingan emas, elektrod komposit emas polivinil klorida (Au-PVC) juga digunakan sebagai elektrod kerja (anod). Morfologi elektrod komposit Au-PVC dicirikan dengan Mikroskop Imbasan Elektron (SEM). Dalam larutan alkali, penjerapan sebatian hidroksida pada elektrod kepingan emas dan elektrod komposit Au-PVC berlaku pada keupayaan ±500 mV. Walau bagaimanapun, pada elektrod kepingan emas, terdapat satu puncak lebar yang kecil sebelum peningkatan drastic arus yang dikaitkan dengan pemindahan cas separa anion OH- yang terjerap secara kimia. Dalam larutan berasid, oksida emas terbentuk selepas keupayaan 1.0 V. Berdasarkan voltammogram berkitar gliserol mengalami dua kali pengoksidaan dalam larutan kalium hidroksida pada elektrod kepingan emas dan elektrod komposit Au-PVC. Manakala dalam larutan asid sulfurik, tindak balas pengoksidaan hanya berlaku sekali. Secara keseluruhannya, pengoksidaan elektrokimia gliserol adalah lebih berkesan dalam larutan alkali. Graf Tafel yang diplot melalui kaedah keupayaan linear V menunjukkan bahawa elektrod komposit Au-PVC merupakan elektrod yang lebih baik berbanding elektrod kepingan emas bagi pengoksidaan elektrokimia dalam medium beralkali. Hasil pengoksidaan elektrokimia gliserol yang dianalisa menggunakan Kromatografi Gas-Spektrometer Jisim mendapati produk yang terhasil adalah asid karboksilik dan sebatian fenol.

 

Kata kunci: pengoksidaan elektrokimia, gliserol, asid karbosilik, sebatian fenol

 

References

1.       da Silva, G.P., Mack, M. & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology Advances 27: 30 – 39

2.       Ullman’s encyclopedia of industrial chemistry, electronic release, (2002). Wiley-VCH.

3.       Dumirel-Gülen, S., Lucas, M. & Claus, P. (2005). Liquid phase oxidation of glycerol over carbon supported gold catalysis. Catalysis Today 102-103: 166-172.

4.       Claus, P., Schimpf, S. & Önal,Y. (2003). in: Proceedings of 18th North American Catalysis Meeting, Cancun/Mexico, June 1-6. pp. 365.

5.       Venancio, E.C., Napporn, W.T. & Motheo, A.J. (2001). Electro-oxidation of glycerol on platinum dispersed in polaniline matrices. Electrochimica Acta 47: 1495-1501.

6.       Pollington, S.D., Dan, I.E., Landon, P., Meenakshisundaram, S., Dimitratos, N., Wagland, A., Hutchings, G. J. & E. Hugh, E.S. (2009). Enhanced selective glycerol oxidation in multiphase structured reactors. CatalysisToday 145: 169-175.

7.       Porta, F. & Prati, L. (2004). Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. Journal of Catalysis 224:397-403.

8.       Pollington, N., Porta, F. & Prati, L. (2005). Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilization method Synthesis and catalytic testing for liquid phase oxidation of glycerol. Applied catalysis A: General 291:210-214

9.       Aguilar, R., Davilla, M.M., Elizalde, M.P., Mattusch, J. & Weerich, R. (2004). Capability of a carbon –polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid. Electrochimica Acta 49: 851-859

10.    Luque, M., Ríos, A. & Valcárcel, M. (1999). A poly (vinyl chloride) graphite composite electrode for flow-injection amperometric determination of antioxidants. Analytica Chimica Acta 395: 217-223.

11.    Riyanto and Mohamed Rozali Othman. (2008). Characterization of Ni-Co-PVC and Ni-Cu-PVC Alloys Prepared By Mechanical Alloying Technique (MAT). The Open Materials Science Journal 2: 40 – 46.

12.    Riyanto, Jumat Salimon & Mohamed Rozali Othman. (2007). Perbandingan Hasil Pengoksidaan Elektrokimia Etanol dalam Larutan Alkali yang Menggunakan Elektrod Platinum-Polivinilklorida  (Pt-PVC) dan Kepingan Logam Pt Sains Malaysiana 36(2):  175-181.

13.    Riyanto, Mohamed Rozali Othman & Jumat Salimon. (2007). Analysis of ethanol using copper and nickel sheet electrodes by cyclic voltammetry. Malaysian Journal of Analytical Sciences 11 (2): 379 – 387.

14.    Kahyaoglu, A., Beden, B. & Lamy, C. (1984). Oxydation electrocatalitique du glycerol sur electrodes d'or et de platine en milieu aqueux. Electrochimica Acta 29: 1489-1492.

15.    Maljaei, A., Arami, M. & Mahmoodi, N M. (2009). Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination 249:1074–1078.

16.    Angerstein-Kozlowska, H., Conway, B.E., Barnett, B. & Mozota, J. (1979). The role of ion adsorption in surface oxide formation and reduction at noble metals: General features of the surface process. Journal of Electroanalytical Chemistry 100: 417-446.

17.    Chen, S., Wu, B. & Cha, C. (1997). An EQCM investigation of oxidation of formic acid at gold electrode in sulfuric acid solution. Journal of Electroanalytical Chemistry 431: 243-247.

18.    Ketchie, W.C., Fang, Y.L., Wong, M.S., Murayama, M. & Davis, R.J. (2007). Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. Journal of Catalysis 250: 94-101.

19.    Ketchie, W.C., Murayama, M. & Davis, R.J. (2007). Selective oxidation of glycerol over carbon-supported AuPd catalysts. Journal of Catalysis 250: 264-273.

20.    Prati, L. & Rossi, M. (1998). Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols. Journal of Catalysis 176: 552-560.

 

Previous                    Content                    Next