Malaysian Journal of Analytical Sciences Vol 22 No 5
(2018): 817 - 827
DOI:
10.17576/mjas-2018-2205-09
LIQUID
CHROMATOGRAPHY TANDEM MASS SPECTROMETRY FOR THE DETECTION AND VALIDATION OF
QUERCETIN-3-O-RUTINOSIDE AND
MYRICETIN FROM
FRACTIONATED Labisia pumila var. alata
(Kromatografi Cecair
Spektrometri Jisim Tandem untuk Pengesanan dan Pengesahsahihan Kuersetin-3-O-Rutinosida dan Mirisetin daripada
Pemeringkatan Labisia pumila var. alata)
Norliza Abdul
Latiff1,3*, Chua Lee Suan2, Mohammad Roji Sarmidi3,
Ismail Ware1, Siti Nor Azlina Abdul Rashid1,3, Maizatulakmal Yahayu1
1Institute of
Bioproduct Development
2Faculty of Chemical and Energy
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
3Innovation Centre in Agritechnology for Advanced
Bioprocessing,
Universiti
Teknologi Malaysia, 84600 Pagoh, Johor, Malaysia
*Corresponding
author: norliza@ibd.utm.my
Received: 6
August 2018; Accepted: 24 September 2018
Abstract
Quercetin-3-O-rutinoside and myricetin was reported to
be important secondary metabolites in Labisia pumila (L. pumila). The reliability of the instrument, its sensitivity and
methodology are the key in the analysis of a specific metabolite and liquid chromatography tandem mass spectrometry (LC-MS/MS) provides better
accuracy and faster separation in detecting of such chemical compound.
Therefore, this study aims to detect and validate the presence of quercetin-3-O-rutinoside and myricetin from fractionated
extract of L. pumila (40% MeOH:
water). The plant material was fractionated using octadecyl (C18) silica solid phase and eluent with a
ratio of 40%
MeOH: water. The separation of compounds was carried out using a C18
reversed phase column (Acquity, 150mm × 4.6mm × 1.7 µm). Negative ionization
was utilized to fragment the precursor ion of m/z 609 for quercetin-3-O-rutinoside and m/z 317 for myricetin. Three fragments ions; m/z 447, 463, 301 was recognized as quercetin-3-O-rutinoside product ions within 3.3
minutes. Meanwhile, m/z 271,137 and
151 represented characteristics ions for myricetin were recognized within 3.9
minutes. The concentration of quercetin-3-O-rutinoside
and myricetin was 0.007 mg/g and 0.009 mg/g respectively. The linearity was
found between 0.991-0.998. Detection based on (limit of detection) LOD and
(limit of quantification) LOQ were found in the ranged of 0.03-0.04 µg/mL and
0.11-0.13 µg/mL, respectively. Both compounds showed good recovery of above
87%. Intra-day and inter-day (RSD) study was in the acceptable range (below
10%). Based on the result of this study, the LC-MS/MS was shown to be the best
selective, fast and sensitive method to determine quercetin-3-O-rutinoside and myricetin in the plant
fraction. These findings could be used as a guideline for the detection of the
compounds and suitable for quality controls of L. pumila this and another medicinal herb containing quercetin-3-O-rutinoside and myricetin.
Keywords: Labisia pumila, quercetin-3-O-rutinoside, myricetin, validation
Abstrak
Kuersetin-3-O-rutinosida dan mirisetin telah
dilaporkan sebagai metabolit sekunder yang penting dalam Labisia pumila (L. pumila).
Kebolehpercayaan instrumen, kepekaan dan kaedah pembangunan menjadi aspek
penting dalam analisis yang disasarkan kepada metabolit tertentu dan
kromatografi cecair spektrometri jisim tandem (KC-SJ/SJ) menyediakan
pengasingan lebih cepat dan tepat bagi pengesanan sebatian kimia. Oleh itu,
kajian ini adalah bertujuan untuk mengesan dan menentusahkan kehadiran
kuersetin-3-O-rutinosida dan
mirisetin daripada pemeringkatan L.
pumila (40%
metanol:air). Bahan tumbuhan ini diperingkatkan menggunakan fasa
pepejal oktadesil silika (C18) dengan kadar 40% metanol: air.
Pengasingan komponen dicapai menggunakan fasa turus berbalik C18
(Acquity, 150 mm × 4.6 mm × 1.7 µm). Pengionan negatif telah digunakan untuk
mengasingkan pencetus ion m/z 609
untuk kuersetin-3-O-rutinosida dan m/z 317 untuk mirisetin. Tiga pecahan
ion; m/z 447, 463, 301 dikenal pasti
sebagai produk molekul ion dari kuersetin-3-O-rutinosida
dalam selang masa 3.3 minit. Manakala m/z
271, 137 and 151 mewakili ciri ion untuk mirisetin telah dikenalpasti dalam
selang masa 3.9 minit. Kepekatan kuersetin-3-O-rutinosida dan mirisetin masing-masing ialah 0.007 mg/g dan 0.009
mg/g. Kelinearan adalah di antara
0.991-0.998. Had pengesanan (LOD) dan had pengkuantitian (LOQ) adalah
masing-masing dalam julat 0.03-0.04 µg/mL dan 0.11-0.13 µg/mL. Kedua-dua
sebatian menunjukkan penghasilan yang baik, lebih daripada 87%. Kajian
dalam-hari dan antara-hari (RSD) adalah dalam julat yang boleh diterima (bawah
10%). Berdasarkan keputusan melalui kajian ini, KC-SJ/SJ ditunjukkan sebagai
kaedah terpilih, cepat dan sensitif bagi menentukan kuersetin-3-O-rutinosida dan mirisetin di dalam
pemeringkat tumbuhan ini. Penemuan ini boleh digunakan sebagai panduan untuk
pengesanan sebatian dan sesuai sebagai kawalan kualiti untuk L. pumila dan herba perubatan yang lain
yang mengandungi kuersetin-3-O-rutinosida
and mirisetin.
Kata kunci: Labisia
pumila, kuersetin-3-O-rutinosida,
mirisetin, pengesahsahihan
References
1.
Ezumi, M. F. W.,
Siti Amrah, S., Suhaimi, A. W. M. and Mohsin, S. S. J. (2007). Evaluation of
female reproductive toxicity of aqueous extract of Labisia pumila var. alata in rats. Indian Journal of Pharmacology, 39(1): 30-32.
2.
Burkill,
I. H. (1935). A dictionary of the economic products of Malay peninsula, Crown
Agent, London, UK.
3.
Jamal,
J. A., Houghton P. J., Milingan S. R. and Ibrahim, J. (2003). The estrogenic
and cytotoxic effects of the extracts of Labisia
pumila var. alata and Labisia pumila var. pumila in vitro. Malaysian
Journal of Medicine and Health Sciences, 1: 53-60.
4.
Institute
for Medical Research (2002). Estrogenic and androgenic activities of Kacip
Fatimah (Labisia pumila). Ministry of Health Malaysia, Kuala Lumpur: pp.
8.
5.
Bhathena,
S. J. and Velasquez, M. T. (2002). Beneficial role of dietary phytoestrogens in
obesity and diabetes. The American Journal of Clinical Nutrition,
76(6): 1191–1201.
6.
Ayida,
A. W., Wan Norzaimoon, W. M., Farihan, H. S. and Azian, A. L. (2007). Effect of
ovariectomy, L. pumila var. alata
treatment and estrogen replacement therapy on the morphology of adipose tissue
in ovariectomized Sparague Dawley rats. Journal
of Medicine, (1): 1-7.
7.
Al-Wahaibi,
A., Wan Nazaimoon W. N. Norsyam, W. N., Farihah, H. S. and Azian, A. L. (2008).
Effect of water extracts of Labisia pumila var. alata on aorta of
ovariectomized Sprague-Dawley rats. Pakistan Journal of Nutrition, 7:
208-213.
8.
Singh,
R. P., Murthy, C. K. N. and Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of
pomegranate (Punicagranatum) peel and
seed extracts using in vitro models. Journal
of Agricultural and Food Chemistry, 50: 81–86.
9.
Fathilah,
S. N., Mohamed, N., Muhammad, N., Mohamed, I. S., Soelaiman, I. N. and Shuid,
A. N. (2013). Labisia pumila
regulates bone-related genes expressions in postmenopausal osteoporosis model. BMC Complementary and Alternative Medicine,
13: 217.
10.
Manda,
V. K., Dale, O. R., Awortwe, C., Ali, Z., Khan, I. A., Walker, L. A. and Khan,
S. I. (2014). Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Frontiers
in Pharmacology, 5: 178.
11.
Choi, H. K, Kim, D.
H., Kim, J. W., Ngadiran, S., Sarmidi, M. R. and Park, C. S. (2010). Labisia pumila extract
protects skin cells from photoaging caused by UVB irradiation. Journal of Bioscience. Bioengineering,
109: 291–296.
12.
Chua, L. S., Lee S.
Y., Abdullah., N., Sarmidi. M. R. (2012).
Review on Labisia pumila (Kacip Fatimah): Bioactive phytochemicals and
skin collagen synthesis promoting herb. Fitoterapia,
83(8): 1322-1335.
13.
Karimi, E., Jaafar,
H. Z. E. and Ahmad, S. (2011). Phytochemical
analysis and antimicrobial activities of methanolic extracts of leaf stem and
root from different varieties of Labisia
pumila Benth. Molecules, 16:
4438-4450.
14.
Ibrahim,
M. H and Jaafar, H. Z. E. (2011).
Enhancement of leaf gas exchange and primary metabolites under carbon
dioxide enrichment up-regulate the production of secondary metabolites in Labisia pumila seedlings. Molecules, 16: 3761-3777.
15.
Ali, Z. and Khan,
I. A. (2011). Alkyl phenols
and saponins from the roots of Labisia
pumila (Kacip Fatimah). Phytochemistry,
72: 2075-2080.
16.
Stone, B. C. (1988). Notes on the
genus Labisia Lindl (Myrsinaceae). Malayan
Nature Journal, 42: 43–51.
17.
Karimi, E. and
Jaafar, H. Z. E. (2011). HPLC and GC-MS
determination of bioactive compounds in microwave obtained extracts of three
varieties of Labisia pumila Benth. Molecules, 16: 6791-6805.
18.
Avula,
B., Wang Y. H., Ali Z., Smillie, T. J. and Khan, I.A. (2011). Quantitative
determination of triterpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method
and confirmation by LC-ESI-TOF. Planta Medica, 77: 1742-1748.
19.
Al-Mekhlafi,
N. A., Shaari, K., Abas, F, Kneer, R., Jayaseela Jeyaray, E. and Stanslas, J.
(2012). Alkenylresorcinols and chytotoxic activity of constituents isolated
from Labisia pumila. Phytochemistry,
80: 42-49.
20.
Mohd
Nazrul Hisham, D., Mohd Lip, J., Mohd Noh, A., Normah, F. and Nurul Nabilah, M.
F. (2011). Identification and isolation of methyl gallate as a polar chemical
marker for Labisia pumila Benth. Journal of Tropical Agriculture and Food
Science, 39: 279-284.
21.
Abdullah, F., Sui
K. L., Man, S., Tan, A. I., Tan, H. P. and Abdullah, Z. (2012). Characterization and identification of Labisia Pumila by multi-steps infrared
spectroscopy. Vibrational Spectroscopy,
62: 200-206.
22.
Chua, L. S.,
Norliza, A. L., Lee, S. Y., Lee, C. T. and Sarmidi, M. R. (2011). Flavonoids and
phenolic acids from Labisa pumila
(Kacip Fatimah). Food Chemistry, 127:
1186-1192.
23.
Chua,
L. S. (2013). A review on plant-based rutin extraction methods and its
pharmacological activities. Journal
of Ethnopharmacology, 150(3): 805–817.
24.
Anelwew
(2014). The use of rutin in anti-aging cosmetics. Retrieved from http://www.articlesnatch.com/ article//3702816#.U6PlHfmSxqW
[14 June 2014,]
25.
Mendez, J., Bilia A. R and Morelli, I. (1995). Phytochemical, investigations of Licania genus, flavonoids and triterpenoids
from Licaniapittieri. Pharmaceutica
Acta Helvetiae, 70: 223-226.
26.
Aherne, S. A. and O’Brien. (1999). The flavonoids,
myricetin, quercetin and rutin, protect against cholestan-3p, 5cr, 6p-triol-
induced toxicity in Chinese hamster ovary cells in vitro. Nutrition Research,
(19)5: 749-760.
27.
Abdah, M. S. N.,
Sarmidi, M. R., Yaakob, H. and Ware, I.
(2014). Fractionation of Labisia pumila
using solid-phase extraction for extraction of gallic acid. Jurnal Teknologi, 69:465-468.
28.
Barwick,
V. (2016). Eurachem/CITAC Guide: Guide to quality in
analytical chemistry: An aid to accreditation (3rd edition). Available
from www.eurachem.org.
29.
Armbruster, D. A., Tillman M. D. and Hubbs, L. M. (1994). Limit of detection (LQD)/limit of
quantitation (LOQ): Comparison of the empirical and the statistical methods
exemplified with GC-MS assays of abused drugs. Clinical Chemistry, 40(7): 1233-1238.
30.
Hollecker,
L., Maurizio P. M., Filippino, G., Scruglia, S., Pinnab, B., Argiolas, F. and
Mariano M. M. (2009). Simultaneous determination of polyphenolic compounds in
red and white grapes grown in Sardinia by high performance liquid chromatography–electron
spray ionisation-mass spectrometry. Journal
of Chromatography A, 1216: 3402-3408.
31.
Abad Garcia, B., Berrueta, L. A.,
Garmon-Lobato, S., Gallo, B. and Vicente, F. (2009). A general analytical strategy for the
characterization of phenolic compounds in fruit juices by high-performance
liquid
chromatography with diode array detection coupled to electrospray
ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216: 5398-5415.
32.
Celli,
G. B., Pereira-Netto, A. B. and Beta, T. (2010). Comparative analysis of total phenolic
content, antioxidant activity, and flavonoids profile of fruits from two
varieties of Brazilian cherry (Eugenia
uniflora L.) throughout the fruit developmental stages. Food
Research International, 44(2011): 2442-2245.
33.
Pikulski, M. and
Brodbelt, J. S. (2003). Differentiation
of flavonoid glycoside isomers by using metal complexation and electrospray
ionization mass spectrometry. Journal
American Society Mass Spectrometry, 14: 1437–1453.
34.
Simirgiotis,
M. J., Bórqueza, J. and Schmeda-Hirschmannb, G. (2013). Antioxidant capacity, polyphenolic content
and tandem HPLC–DAD–ESI/MS profiling of phenolic compounds from the South
American berries Lumaapiculata and L. chequén, Food Chemistry, 139(1-4): 289-299.
35.
Yun, L., Bin, W.,
Zhixiong, L., Ting, H., Mingcang, C., Yingzi, T., Jian, J. and Chenggang, H. (2012). Metabolite identification of
myricetin in rats using HPLC coupled with ESI-MS. Chromatographia, 75(11): 655-660.
36.
Saldanha, L.
L.,Vilegas, W. and Dokkedal, A. L. (2013). Characterization of flavonoids and
phenolic acids in Myrciabella cambess
using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules, 18: 8402-8416.
37.
Koponen, J. M.,
Happonen, A. M., Auriola, S., Kontkanen, H., Buchert, J. and Poutanen, K. S. (2008). Characterization and fate of
black currant and bilberry flavonols in enzyme-aided processing. Journal of
Agriculture and Food Chemistry, 56(9): 3136-3144.