Malaysian Journal of Analytical Sciences Vol 22 No 5 (2018): 817 - 827

DOI: 10.17576/mjas-2018-2205-09

 

 

 

LIQUID CHROMATOGRAPHY TANDEM MASS SPECTROMETRY FOR THE DETECTION AND VALIDATION OF QUERCETIN-3-O-RUTINOSIDE AND MYRICETIN FROM FRACTIONATED Labisia pumila var. alata

 

(Kromatografi Cecair Spektrometri Jisim Tandem untuk Pengesanan dan Pengesahsahihan Kuersetin-3-O-Rutinosida dan Mirisetin daripada Pemeringkatan Labisia pumila var. alata)

 

Norliza Abdul Latiff1,3*, Chua Lee Suan2, Mohammad Roji Sarmidi3, Ismail Ware1, Siti Nor Azlina Abdul Rashid1,3, Maizatulakmal Yahayu1

 

1Institute of Bioproduct Development

2Faculty of Chemical and Energy

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

3Innovation Centre in Agritechnology for Advanced Bioprocessing,

Universiti Teknologi Malaysia, 84600 Pagoh, Johor, Malaysia

 

*Corresponding author:  norliza@ibd.utm.my

 

 

Received: 6 August 2018; Accepted: 24 September 2018

 

 

Abstract

Quercetin-3-O-rutinoside and myricetin was reported to be important secondary metabolites in Labisia pumila (L. pumila). The reliability of the instrument, its sensitivity and methodology are the key in the analysis of a specific metabolite and liquid chromatography tandem mass spectrometry (LC-MS/MS) provides better accuracy and faster separation in detecting of such chemical compound. Therefore, this study aims to detect and validate the presence of quercetin-3-O-rutinoside and myricetin from fractionated extract of L. pumila (40% MeOH: water). The plant material was fractionated using octadecyl (C18) silica solid phase and eluent with a ratio of 40% MeOH: water. The separation of compounds was carried out using a C18 reversed phase column (Acquity, 150mm × 4.6mm × 1.7 µm). Negative ionization was utilized to fragment the precursor ion of m/z 609 for quercetin-3-O-rutinoside and m/z 317 for myricetin. Three fragments ions; m/z 447, 463, 301 was recognized as quercetin-3-O-rutinoside product ions within 3.3 minutes. Meanwhile, m/z 271,137 and 151 represented characteristics ions for myricetin were recognized within 3.9 minutes. The concentration of quercetin-3-O-rutinoside and myricetin was 0.007 mg/g and 0.009 mg/g respectively. The linearity was found between 0.991-0.998. Detection based on (limit of detection) LOD and (limit of quantification) LOQ were found in the ranged of 0.03-0.04 µg/mL and 0.11-0.13 µg/mL, respectively. Both compounds showed good recovery of above 87%. Intra-day and inter-day (RSD) study was in the acceptable range (below 10%). Based on the result of this study, the LC-MS/MS was shown to be the best selective, fast and sensitive method to determine quercetin-3-O-rutinoside and myricetin in the plant fraction. These findings could be used as a guideline for the detection of the compounds and suitable for quality controls of L. pumila this and another medicinal herb containing quercetin-3-O-rutinoside and myricetin.

 

Keywords:  Labisia pumila, quercetin-3-O-rutinoside, myricetin, validation

 

Abstrak

Kuersetin-3-O-rutinosida dan mirisetin telah dilaporkan sebagai metabolit sekunder yang penting dalam Labisia pumila (L. pumila). Kebolehpercayaan instrumen, kepekaan dan kaedah pembangunan menjadi aspek penting dalam analisis yang disasarkan kepada metabolit tertentu dan kromatografi cecair spektrometri jisim tandem (KC-SJ/SJ) menyediakan pengasingan lebih cepat dan tepat bagi pengesanan sebatian kimia. Oleh itu, kajian ini adalah bertujuan untuk mengesan dan menentusahkan kehadiran kuersetin-3-O-rutinosida dan mirisetin daripada pemeringkatan L. pumila (40% metanol:air). Bahan tumbuhan ini diperingkatkan menggunakan fasa pepejal oktadesil silika (C18) dengan kadar 40% metanol: air. Pengasingan komponen dicapai menggunakan fasa turus berbalik C18 (Acquity, 150 mm × 4.6 mm × 1.7 µm). Pengionan negatif telah digunakan untuk mengasingkan pencetus ion m/z 609 untuk kuersetin-3-O-rutinosida dan m/z 317 untuk mirisetin. Tiga pecahan ion; m/z 447, 463, 301 dikenal pasti sebagai produk molekul ion dari kuersetin-3-O-rutinosida dalam selang masa 3.3 minit. Manakala m/z 271, 137 and 151 mewakili ciri ion untuk mirisetin telah dikenalpasti dalam selang masa 3.9 minit. Kepekatan kuersetin-3-O-rutinosida dan mirisetin masing-masing ialah 0.007 mg/g dan 0.009 mg/g.  Kelinearan adalah di antara 0.991-0.998. Had pengesanan (LOD) dan had pengkuantitian (LOQ) adalah masing-masing dalam julat 0.03-0.04 µg/mL dan 0.11-0.13 µg/mL. Kedua-dua sebatian menunjukkan penghasilan yang baik, lebih daripada 87%. Kajian dalam-hari dan antara-hari (RSD) adalah dalam julat yang boleh diterima (bawah 10%). Berdasarkan keputusan melalui kajian ini, KC-SJ/SJ ditunjukkan sebagai kaedah terpilih, cepat dan sensitif bagi menentukan kuersetin-3-O-rutinosida dan mirisetin di dalam pemeringkat tumbuhan ini. Penemuan ini boleh digunakan sebagai panduan untuk pengesanan sebatian dan sesuai sebagai kawalan kualiti untuk L. pumila dan herba perubatan yang lain yang mengandungi kuersetin-3-O-rutinosida and mirisetin.

 

Kata kunci:  Labisia pumila, kuersetin-3-O-rutinosida, mirisetin, pengesahsahihan

 

References

1.       Ezumi, M. F. W., Siti Amrah, S., Suhaimi, A. W. M. and Mohsin, S. S. J. (2007). Evaluation of female reproductive toxicity of aqueous extract of Labisia pumila var. alata in rats. Indian Journal of Pharmacology, 39(1): 30-32.

2.       Burkill, I. H. (1935). A dictionary of the economic products of Malay peninsula, Crown Agent, London, UK.

3.       Jamal, J. A., Houghton P. J., Milingan S. R. and Ibrahim, J. (2003). The estrogenic and cytotoxic effects of the extracts of Labisia pumila var. alata and Labisia pumila var. pumila in vitro. Malaysian Journal of Medicine and Health Sciences, 1: 53-60.

4.       Institute for Medical Research (2002). Estrogenic and androgenic activities of Kacip Fatimah (Labisia pumila). Ministry of Health Malaysia, Kuala Lumpur: pp. 8.

5.       Bhathena, S. J. and Velasquez, M. T. (2002). Beneficial role of dietary phytoestrogens in obesity and diabetes.  The American Journal of Clinical Nutrition, 76(6): 1191–1201.

6.       Ayida, A. W., Wan Norzaimoon, W. M., Farihan, H. S. and Azian, A. L. (2007). Effect of ovariectomy, L. pumila var. alata treatment and estrogen replacement therapy on the morphology of adipose tissue in ovariectomized Sparague Dawley rats. Journal of Medicine, (1): 1-7.

7.       Al-Wahaibi, A., Wan Nazaimoon W. N. Norsyam, W. N., Farihah, H. S. and Azian, A. L. (2008). Effect of water extracts of Labisia pumila var. alata on aorta of ovariectomized Sprague-Dawley rats. Pakistan Journal of Nutrition, 7: 208-213.

8.       Singh, R. P., Murthy, C. K. N. and Jayaprakasha, G. K. (2002).  Studies on the antioxidant activity of pomegranate (Punicagranatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50: 81–86.

9.       Fathilah, S. N., Mohamed, N., Muhammad, N., Mohamed, I. S., Soelaiman, I. N. and Shuid, A. N. (2013). Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model. BMC Complementary and Alternative Medicine, 13: 217.

10.    Manda, V. K., Dale, O. R., Awortwe, C., Ali, Z., Khan, I. A., Walker, L. A. and Khan, S. I. (2014). Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents.  Frontiers in Pharmacology, 5: 178.

11.    Choi, H. K, Kim, D. H., Kim, J. W., Ngadiran, S., Sarmidi, M. R. and Park, C. S. (2010).  Labisia pumila extract protects skin cells from photoaging caused by UVB irradiation. Journal of Bioscience. Bioengineering, 109: 291–296.

12.    Chua, L. S., Lee S. Y., Abdullah., N.,  Sarmidi. M. R. (2012). Review on Labisia pumila (Kacip Fatimah): Bioactive phytochemicals and skin collagen synthesis promoting herb. Fitoterapia, 83(8): 1322-1335.

13.    Karimi, E., Jaafar, H. Z. E. and Ahmad, S. (2011).  Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf stem and root from different varieties of Labisia pumila Benth. Molecules, 16: 4438-4450.

14.    Ibrahim, M. H and Jaafar, H. Z. E. (2011).  Enhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulate the production of secondary metabolites in Labisia pumila seedlings. Molecules, 16: 3761-3777.

15.    Ali, Z. and Khan, I. A. (2011).  Alkyl phenols and saponins from the roots of Labisia pumila (Kacip Fatimah). Phytochemistry, 72: 2075-2080.

16.    Stone, B. C. (1988). Notes on the genus Labisia Lindl (Myrsinaceae). Malayan Nature Journal, 42: 43–51.

17.    Karimi, E. and Jaafar, H. Z. E. (2011).  HPLC and GC-MS determination of bioactive compounds in microwave obtained extracts of three varieties of Labisia pumila Benth. Molecules, 16: 6791-6805.

18.    Avula, B., Wang Y. H., Ali Z., Smillie, T. J. and Khan, I.A. (2011). Quantitative determination of triterpene saponins and alkenated-phenolics from Labisia pumila using LC-UV/ELSD method and confirmation by LC-ESI-TOF.  Planta Medica, 77: 1742-1748.

19.    Al-Mekhlafi, N. A., Shaari, K., Abas, F, Kneer, R., Jayaseela Jeyaray, E. and Stanslas, J. (2012). Alkenylresorcinols and chytotoxic activity of constituents isolated from Labisia pumila.  Phytochemistry, 80: 42-49.

20.    Mohd Nazrul Hisham, D., Mohd Lip, J., Mohd Noh, A., Normah, F. and Nurul Nabilah, M. F. (2011). Identification and isolation of methyl gallate as a polar chemical marker for Labisia pumila Benth. Journal of Tropical Agriculture and Food Science, 39: 279-284.

21.    Abdullah, F., Sui K. L., Man, S., Tan, A. I., Tan, H. P. and Abdullah, Z. (2012).  Characterization and identification of Labisia Pumila by multi-steps infrared spectroscopy. Vibrational Spectroscopy, 62: 200-206.

22.    Chua, L. S., Norliza, A. L., Lee, S. Y., Lee, C. T. and Sarmidi, M. R. (2011). Flavonoids and phenolic acids from Labisa pumila (Kacip Fatimah). Food Chemistry, 127: 1186-1192.

23.    Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of  Ethnopharmacology, 150(3): 805–817.

24.    Anelwew (2014). The use of rutin in anti-aging cosmetics. Retrieved from   http://www.articlesnatch.com/ article//3702816#.U6PlHfmSxqW [14 June 2014,]

25.    Mendez, J., Bilia A. R and Morelli, I. (1995). Phytochemical, investigations of Licania genus, flavonoids and triterpenoids from Licaniapittieri. Pharmaceutica Acta Helvetiae, 70: 223-226.

26.    Aherne, S. A. and O’Brien. (1999). The flavonoids, myricetin, quercetin and rutin, protect against cholestan-3p, 5cr, 6p-triol- induced toxicity in Chinese hamster ovary cells in vitro. Nutrition Research, (19)5: 749-760.

27.    Abdah, M. S. N., Sarmidi, M. R., Yaakob, H. and Ware, I. (2014). Fractionation of Labisia pumila using solid-phase extraction for extraction of gallic acid. Jurnal Teknologi, 69:465-468.

28.    Barwick, V. (2016).  Eurachem/CITAC Guide: Guide to quality in analytical chemistry: An aid to accreditation (3rd edition). Available from www.eurachem.org.

29.    Armbruster, D. A., Tillman M. D. and Hubbs, L. M. (1994).  Limit of detection (LQD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clinical Chemistry, 40(7): 1233-1238.

30.    Hollecker, L., Maurizio P. M., Filippino, G., Scruglia, S., Pinnab, B., Argiolas, F. and Mariano M. M. (2009). Simultaneous determination of polyphenolic compounds in red and white grapes grown in Sardinia by high performance liquid chromatography–electron spray ionisation-mass spectrometry. Journal of Chromatography A, 1216: 3402-3408.

31.    Abad Garcia, B., Berrueta, L. A., Garmon-Lobato, S., Gallo, B. and Vicente, F. (2009).  A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216: 5398-5415.

32.    Celli, G. B., Pereira-Netto, A. B. and Beta, T. (2010).  Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages.  Food Research International, 44(2011): 2442-2245.

33.    Pikulski, M. and Brodbelt, J. S. (2003).  Differentiation of flavonoid glycoside isomers by using metal complexation and electrospray ionization mass spectrometry. Journal American Society Mass Spectrometry, 14: 1437–1453.

34.    Simirgiotis, M. J., Bórqueza, J. and Schmeda-Hirschmannb, G. (2013).  Antioxidant capacity, polyphenolic content and tandem HPLC–DAD–ESI/MS profiling of phenolic compounds from the South American berries Lumaapiculata and L. chequén, Food Chemistry, 139(1-4): 289-299.

35.    Yun, L., Bin, W., Zhixiong, L., Ting, H., Mingcang, C., Yingzi, T., Jian, J. and Chenggang, H. (2012). Metabolite identification of myricetin in rats using HPLC coupled with ESI-MS. Chromatographia, 75(11): 655-660.

36.    Saldanha, L. L.,Vilegas, W. and Dokkedal, A. L. (2013). Characterization of flavonoids and phenolic acids in Myrciabella cambess using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules, 18: 8402-8416.

37.    Koponen, J. M., Happonen, A. M., Auriola, S., Kontkanen, H., Buchert, J. and Poutanen, K. S. (2008). Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. Journal of Agriculture and Food Chemistry, 56(9): 3136-3144.

 




Previous                    Content                    Next