Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 921 - 930
DOI:
10.17576/mjas-2018-2206-01
THE
PHYSICAL AND ELECTROCHEMICAL CHARACTERISTIC OF GOLD NANOPARTICLES SUPPORTED
PEDOT/GRAPHENE COMPOSITE AS POTENTIAL CATHODE MATERIAL IN FUEL CELLS
(Pencirian Fizikal dan Elektrokimia Komposit Zarah Nano
Aurum Disokong PEDOT/Grafin sebagai Bahan Katod Berpotensi dalam Sel Bahan Api)
Nurul’ain Basyirah Muhamad and Farhanini Yusoff*
School
of Marine and Environmental Sciences,
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
*Corresponding
author: farhanini@umt.edu.my
Received: 2
August 2018; Accepted: 13 November 2018
Abstract
Gold nanoparticles/poly(3,4-ethylenedioxythiophene)/reduced graphene
oxide (denoted as AuNPs/PEDOT/rGO) was synthesized as an electrocatalyst of
cathode materials for used in fuel cells. The AuNPs/PEDOT/rGO catalyst was
prepared by chemical deposition of AuNPs/PEDOT onto rGO sheets. The physical
properties of composite were characterized by X-ray diffraction (XRD), scanning
electron microscopy (
Keywords: gold
nanoparticles, poly(3,4-ethylenedioxythiophene), reduced graphene oxide,
cathode catalyst, fuel cells
Abstrak
Zarah nano
aurum/poli(3,4-etilenadioxitiopena)/grafin oksida terturun (dilabel sebagai AuNPs/PEDOT/rGO)
telah disintesis sebagai elektropemangkin bahan katod untuk digunakan dalam sel
bahan api. Pemangkin AuNPs/PEDOT/rGO telah disediakan melalui pemendapan kimia
AuNPs/PEDOT ke dalam lembaran rGO. Sifat fizikal komposit telah dicirikan oleh pembelauan
sinar-X (XRD), mikroskop imbasan elektron (SEM), Brunauer-Emmett-Teller (BET)
dan analisis termogravimetrik (TGA). Hasil SEM telah mengesahkan AuNPs telah
berjaya melekat di lembaran PEDOT/rGO, sementara corak XRD mengesahkan
kehadiran struktur kristalografi komposit. Analisis termogravimetrik telah
membuktikan penguraian komposit yang telah disintesis di bawah 100 °C dimana ia
sesuai digunakan sebagai bahan katod untuk sel bahan api. Untuk fabrikasi
elektrod diubahsuai, setiap 10µL pemendapan komposit telah dititik alas pada
permukaan elektrod karbon berkaca (GCE). Sementara itu, voltametri berkitar dan
spektroskopi elektrokimia impedans telah digunakan untuk mengkaji sifat
elektrokimia elektrod diubahsuai di dalam cecair 1.0 M KCl merujuk kepada
sistem redoks 5.0 mM K4[Fe(CN)6]. Keputusan menunjukkan
pemangkin AuNPs/PEDOT/rGO/GCE meningkatkan konduktiviti yang tinggi dan
pemindahan cas dimana ia berguna sebagai bahan untuk pemangkin katod dalam sel
bahan api.
Kata kunci: zarah nano
aurum, poli(3,4-etilenadioxitiopena), grafin oksida terturun, pemangkin katod,
sel bahan api
References
1.
Shao,
M. (2015). Electrocatalysis in fuel cells. Catalysts,
5 (4): 2115-2121.
2.
Holton,
O. T. and Stevenson, J. W. (2013). The role of platinum in proton exchange
membrane fuel cells. Platinum Metals Review, 57(4): 259-271.
3.
Peera,
S. G., Tintula, K. K., Sahu, A. K., Shanmugam, S., Sridhar, P. and Pitchumani,
S. (2013). Catalytic activity of Pt anchored onto graphite nanofiber-poly (3,
4-ethylenedioxythiophene) composite toward oxygen reduction reaction in polymer
electrolyte fuel cells. Electrochimica Acta, 108: 95-103.
4.
Ferreira,
P. J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H. A.
(2005). Instability of Pt/C electrocatalysts in proton exchange membrane fuel
cells a mechanistic investigation. Journal of The Electrochemical
Society, 152(11):
2256-2271.
5.
Zhang,
L. and Xia, Z. (2011). Mechanisms of oxygen reduction reaction on
nitrogen-doped graphene for fuel cells. The Journal of Physical
Chemistry C, 115(22):
11170-11176.
6.
Rad,
A. G., Abbasi, H. and Afzali, M. H. (2011). Gold nanoparticles: Synthesizing,
characterizing and reviewing novel application in recent years. Physics
Procedia, 22: 203-208.
7.
Choi,
Y., Gu, M., Park, J., Song, H. K. and Kim, B. S. (2012). Graphene multilayer
supported gold nanoparticles for efficient electrocatalysts toward methanol
oxidation. Advanced Energy Materials, 2 (12): 1510-1518.
8.
Hu,
Y., Jin, J., Wu, P., Zhang, H. and Cai, C. (2010). Graphene–gold nanostructure
composites fabricated by electrodeposition and their electrocatalytic activity
toward the oxygen reduction and glucose oxidation. Electrochimica Acta, 56(1): 491-500.
9.
Chen,
J., Jia, C. and Wan, Z. (2014). Novel hybrid nanocomposite based on poly
(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode
material for supercapacitor. Synthetic Metals, 18: 69-76.
10.
Shervedani,
R. K. and Amini, A. (2014). Novel graphene-gold hybrid nanostructures
constructed via sulfur modified graphene: preparation and characterization by
surface and electrochemical techniques. Electrochimica Acta, 121: 376-385.
11.
Ali,
A., Zhang, Y., Jamal, R. and Abdiryim, T. (2017). Solid-state heating synthesis
of poly(3,4-ethylenedioxythiophene)/gold/graphene composite and its application
for amperometric determination of nitrite and iodate. Nanoscale
Research Letters, 12(1):
568.
12.
Fortunato,
G. V., de Lima, F. and Maia, G. (2016). Oxygen-reduction reaction strongly
electrocatalyzed by Pt electrodeposited onto graphene or graphene
nanoribbons. Journal of Power Sources, 302: 247-258.
13.
Dinesh,
B. and Saraswathi, R. (2016). Enhanced performance of Pt and Pt–Ru supported
PEDOT–RGO nanocomposite towards methanol oxidation. International
Journal of Hydrogen Energy, 41(31):
13448-13458.
14.
Rao,
H., Chen, M., Ge, H., Lu, Z., Liu, X., Zou, P., Wang, X., He, H., Zeng, X. and
Wang, Y. (2017). A novel electrochemical sensor based on Au@ PANI composites
film modified glassy carbon electrode binding molecular imprinting technique
for the determination of melamine. Biosensors and Bioelectronics, 87: 1029-1035.
15.
Groenendaal,
L., Zotti, G., Aubert, P. H., Waybright, S. M. and Reynolds, J. R. (2003).
Electrochemistry of poly (3, 4‐alkylenedioxythiophene)
derivatives. Advanced Materials, 15(11): 855-879.
16.
Hummers
Jr, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal
of The American Chemical Society, 80(6): 1339-1339.
17.
Yang,
J. and Gunasekaran, S. (2013). Electrochemically reduced graphene oxide sheets
for use in high performance supercapacitors. Carbon, 51: 36-44.
18.
Mao,
X., Yang, W., He, X., Chen, Y., Zhao, Y., Zhou, Y., Yang, Y. and Xu, J. (2017).
The preparation and characteristic of poly (3,
4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its
application for supercapacitor electrode. Materials Science and Engineering:
B, 216: 16-22.
19.
Liu,
Z., Xu, J., Yue, R., Yang, T. and Gao, L. (2016). Facile one-pot synthesis of
Au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in
red wine sample. Electrochimica Acta, 196: 1-12.
20.
Park,
S., An, J., Potts, J. R., Velamakanni, A., Murali, S. and Ruoff, R. S. (2011).
Hydrazine-reduction of graphite-and graphene oxide. Carbon, 49(9): 3019-3023.
21.
Zhang,
X., Zhang, D., Chen, Y., Sun, X. and Ma, Y. (2012). Electrochemical reduction of graphene
oxide films: preparation,
characterization and their electrochemical properties. Chinese Science
Bulletin, 57(23):
3045-3050.
22.
Selvaganesh,
S. V., Mathiyarasu, J., Phani, K. L. N. and Yegnaraman, V. (2007). Chemical
synthesis of PEDOT–Au nanocomposite. Nanoscale Research Letters, 2(11): 546.
23.
Saini,
P., Sharma, R. and Chadha, N. (2017). Determination of defect density,
crystallite size and number of graphene layers in graphene analogues using
X-ray diffraction and raman spectroscopy. Indian Journal of Pure &
Applied Physics, 55(9):
625-629.
24.
Chen,
L., Liu, W., Su, X., Xiao, S., Xie, H., Uher, C. and Tang, X. (2017). Chemical
synthesis and enhanced electrical properties of bulk poly (3,
4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic
Metals, 229: 65-71.
25.
Dreyer,
D. R., Park, S., Bielawski. C. W. and Ruoff, R. S. (2010) The chemistry of
graphene oxide. Chemical Society Reviews,
39: 228-240.
26.
Li,
Y. and Ni, X. (2016). One-step preparation of graphene
oxide–poly(3,4-ethylenedioxythiophene) composite films for nonvolatile
rewritable memory devices. RSC Advances, 6(20): 16340-16347.
27.
Felix-Navarro,
R. M., Beltran-Gastelum, M., Reynoso-Soto, E. A., Paraguay-Delgado, F.,
Alonso-Nuñez, G. and Flores-Hernandez, J. R. (2016). Bimetallic Pt–Au
nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for
oxygen reduction. Renewable Energy, 87: 31-41.
28.
Yusoff,
F., Mohamed, N., Aziz, A. and Ab Ghani, S. (2014). electrocatalytic reduction
of oxygen at perovskite (BSCF)-MWCNT composite electrodes. Materials
Sciences and Applications, 5(4):
199-211.
29.
Azman,
N. H. N., Lim, H. N. and Sulaiman, Y. (2016). Effect of electropolymerization
potential on the preparation of PEDOT/graphene oxide hybrid material for
supercapacitor application. Electrochimica Acta, 188: 785-792.
30.
Dar,
F. I., Moonoosawmy, K. R. and Es-Souni, M. (2013). Morphology and property
control of Nio nanostructures for supercapacitor applications. Nanoscale
Research Letters, 8(1):
363.
31.
Zhang,
Z., Zhu, H., Wang, X. and Yang, X. (2011). Sensitive electrochemical sensor for
hydrogen peroxide using Fe3O4 magnetic nanoparticles as a
mimic for peroxidase. Microchimica Acta, 174(1-2): 183-189.
32.
Yusoff,
F., Aziz, A., Mohamed, N. and Ab Ghani, S. (2013). Synthesis and
characterizations of BSCF at different pH as future cathode materials for fuel
cell. International Journal of Electrochemical Science, 8(8): 10672-10687.