Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 921 - 930

DOI: 10.17576/mjas-2018-2206-01

 

 

 

THE PHYSICAL AND ELECTROCHEMICAL CHARACTERISTIC OF GOLD NANOPARTICLES SUPPORTED PEDOT/GRAPHENE COMPOSITE AS POTENTIAL CATHODE MATERIAL IN FUEL CELLS

 

(Pencirian Fizikal dan Elektrokimia Komposit Zarah Nano Aurum Disokong PEDOT/Grafin sebagai Bahan Katod Berpotensi dalam Sel Bahan Api)

 

Nurul’ain Basyirah Muhamad and Farhanini Yusoff*

 

School of Marine and Environmental Sciences,

 Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 2 August 2018; Accepted: 13 November 2018

 

 

Abstract

Gold nanoparticles/poly(3,4-ethylenedioxythiophene)/reduced graphene oxide (denoted as AuNPs/PEDOT/rGO) was synthesized as an electrocatalyst of cathode materials for used in fuel cells. The AuNPs/PEDOT/rGO catalyst was prepared by chemical deposition of AuNPs/PEDOT onto rGO sheets. The physical properties of composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and thermogravimetric analysis (TGA). The SEM results confirm the AuNPs is successfully attached on PEDOT/rGO sheets, while the XRD pattern confirmed the existence of crystallographic structure of composite. Analysis of thermogravimetry revealed the decomposition of synthesized composite is below 100 °C, where it is suitable for cathode material in fuel cells. For the fabrication of modified electrode, 10 µL of composite suspension was drop-casted on glassy carbon electrode (GCE) surface. Meanwhile, cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical behaviour of modified electrode in in 1.0 M KCl solution with a reference to 5.0 mM K4[Fe(CN)6] redox system. The result demonstrates that AuNPs/PEDOT/rGO catalyst enhance the high conductivity and charge transfer where it is useful as a material for cathode catalyst in fuel cells.

 

Keywords:    gold nanoparticles, poly(3,4-ethylenedioxythiophene), reduced graphene oxide, cathode catalyst, fuel cells

 

Abstrak

Zarah nano aurum/poli(3,4-etilenadioxitiopena)/grafin oksida terturun (dilabel sebagai AuNPs/PEDOT/rGO) telah disintesis sebagai elektropemangkin bahan katod untuk digunakan dalam sel bahan api. Pemangkin AuNPs/PEDOT/rGO telah disediakan melalui pemendapan kimia AuNPs/PEDOT ke dalam lembaran rGO. Sifat fizikal komposit telah dicirikan oleh pembelauan sinar-X (XRD), mikroskop imbasan elektron (SEM), Brunauer-Emmett-Teller (BET) dan analisis termogravimetrik (TGA). Hasil SEM telah mengesahkan AuNPs telah berjaya melekat di lembaran PEDOT/rGO, sementara corak XRD mengesahkan kehadiran struktur kristalografi komposit. Analisis termogravimetrik telah membuktikan penguraian komposit yang telah disintesis di bawah 100 °C dimana ia sesuai digunakan sebagai bahan katod untuk sel bahan api. Untuk fabrikasi elektrod diubahsuai, setiap 10µL pemendapan komposit telah dititik alas pada permukaan elektrod karbon berkaca (GCE). Sementara itu, voltametri berkitar dan spektroskopi elektrokimia impedans telah digunakan untuk mengkaji sifat elektrokimia elektrod diubahsuai di dalam cecair 1.0 M KCl merujuk kepada sistem redoks 5.0 mM K4[Fe(CN)6]. Keputusan menunjukkan pemangkin AuNPs/PEDOT/rGO/GCE meningkatkan konduktiviti yang tinggi dan pemindahan cas dimana ia berguna sebagai bahan untuk pemangkin katod dalam sel bahan api.

 

Kata kunci:    zarah nano aurum, poli(3,4-etilenadioxitiopena), grafin oksida terturun, pemangkin katod, sel bahan api

 

References

1.          Shao, M. (2015). Electrocatalysis in fuel cells. Catalysts, 5 (4): 2115-2121.

2.          Holton, O. T. and Stevenson, J. W. (2013). The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review57(4): 259-271.

3.          Peera, S. G., Tintula, K. K., Sahu, A. K., Shanmugam, S., Sridhar, P. and Pitchumani, S. (2013). Catalytic activity of Pt anchored onto graphite nanofiber-poly (3, 4-ethylenedioxythiophene) composite toward oxygen reduction reaction in polymer electrolyte fuel cells. Electrochimica Acta108: 95-103.

4.          Ferreira, P. J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S. and Gasteiger, H. A. (2005). Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation. Journal of The Electrochemical Society152(11): 2256-2271.

5.          Zhang, L. and Xia, Z. (2011). Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. The Journal of Physical Chemistry C115(22): 11170-11176.

6.          Rad, A. G., Abbasi, H. and Afzali, M. H. (2011). Gold nanoparticles: Synthesizing, characterizing and reviewing novel application in recent years. Physics Procedia22: 203-208.

7.          Choi, Y., Gu, M., Park, J., Song, H. K. and Kim, B. S. (2012). Graphene multilayer supported gold nanoparticles for efficient electrocatalysts toward methanol oxidation. Advanced Energy Materials2 (12): 1510-1518.

8.          Hu, Y., Jin, J., Wu, P., Zhang, H. and Cai, C. (2010). Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochimica Acta56(1): 491-500.

9.          Chen, J., Jia, C. and Wan, Z. (2014). Novel hybrid nanocomposite based on poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synthetic Metals18: 69-76.

10.        Shervedani, R. K. and Amini, A. (2014). Novel graphene-gold hybrid nanostructures constructed via sulfur modified graphene: preparation and characterization by surface and electrochemical techniques. Electrochimica Acta121: 376-385.

11.        Ali, A., Zhang, Y., Jamal, R. and Abdiryim, T. (2017). Solid-state heating synthesis of poly(3,4-ethylenedioxythiophene)/gold/graphene composite and its application for amperometric determination of nitrite and iodate. Nanoscale Research Letters12(1): 568.

12.        Fortunato, G. V., de Lima, F. and Maia, G. (2016). Oxygen-reduction reaction strongly electrocatalyzed by Pt electrodeposited onto graphene or graphene nanoribbons. Journal of Power Sources302: 247-258.

13.        Dinesh, B. and Saraswathi, R. (2016). Enhanced performance of Pt and Pt–Ru supported PEDOT–RGO nanocomposite towards methanol oxidation. International Journal of Hydrogen Energy41(31): 13448-13458.

14.        Rao, H., Chen, M., Ge, H., Lu, Z., Liu, X., Zou, P., Wang, X., He, H., Zeng, X. and Wang, Y. (2017). A novel electrochemical sensor based on Au@ PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosensors and Bioelectronics87: 1029-1035.

15.        Groenendaal, L., Zotti, G., Aubert, P. H., Waybright, S. M. and Reynolds, J. R. (2003). Electrochemistry of poly (3, 4alkylenedioxythiophene) derivatives. Advanced Materials15(11): 855-879.

16.        Hummers Jr, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of The American Chemical Society80(6): 1339-1339.

17.        Yang, J. and Gunasekaran, S. (2013). Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon51: 36-44.

18.        Mao, X., Yang, W., He, X., Chen, Y., Zhao, Y., Zhou, Y., Yang, Y. and Xu, J. (2017). The preparation and characteristic of poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Materials Science and Engineering: B216: 16-22.

19.        Liu, Z., Xu, J., Yue, R., Yang, T. and Gao, L. (2016). Facile one-pot synthesis of Au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochimica Acta196: 1-12.

20.        Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S. and Ruoff, R. S. (2011). Hydrazine-reduction of graphite-and graphene oxide. Carbon49(9): 3019-3023.

21.        Zhang, X., Zhang, D., Chen, Y., Sun, X. and Ma, Y. (2012).  Electrochemical  reduction  of  graphene  oxide films: preparation, characterization and their electrochemical properties. Chinese Science Bulletin57(23): 3045-3050.

22.        Selvaganesh, S. V., Mathiyarasu, J., Phani, K. L. N. and Yegnaraman, V. (2007). Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Research Letters2(11): 546.

23.        Saini, P., Sharma, R. and Chadha, N. (2017). Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and raman spectroscopy. Indian Journal of Pure & Applied Physics55(9): 625-629.

24.        Chen, L., Liu, W., Su, X., Xiao, S., Xie, H., Uher, C. and Tang, X. (2017). Chemical synthesis and enhanced electrical properties of bulk poly (3, 4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic Metals, 229: 65-71.

25.        Dreyer, D. R., Park, S., Bielawski. C. W. and Ruoff, R. S. (2010) The chemistry of graphene oxide. Chemical Society Reviews, 39: 228-240.

26.        Li, Y. and Ni, X. (2016). One-step preparation of graphene oxide–poly(3,4-ethylenedioxythiophene) composite films for nonvolatile rewritable memory devices. RSC Advances6(20): 16340-16347.

27.        Felix-Navarro, R. M., Beltran-Gastelum, M., Reynoso-Soto, E. A., Paraguay-Delgado, F., Alonso-Nuñez, G. and Flores-Hernandez, J. R. (2016). Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renewable Energy87: 31-41.

28.        Yusoff, F., Mohamed, N., Aziz, A. and Ab Ghani, S. (2014). electrocatalytic reduction of oxygen at perovskite (BSCF)-MWCNT composite electrodes. Materials Sciences and Applications5(4): 199-211.

29.        Azman, N. H. N., Lim, H. N. and Sulaiman, Y. (2016). Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application. Electrochimica Acta188: 785-792.

30.        Dar, F. I., Moonoosawmy, K. R. and Es-Souni, M. (2013). Morphology and property control of Nio nanostructures for supercapacitor applications. Nanoscale Research Letters8(1): 363.

31.        Zhang, Z., Zhu, H., Wang, X. and Yang, X. (2011). Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchimica Acta174(1-2): 183-189.

32.        Yusoff, F., Aziz, A., Mohamed, N. and Ab Ghani, S. (2013). Synthesis and characterizations of BSCF at different pH as future cathode materials for fuel cell. International Journal of Electrochemical Science, 8(8): 10672-10687.

 

 




Previous                    Content                    Next