Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 931 - 942

DOI: 10.17576/mjas-2018-2206-02

 

 

 

ENHANCED CORROSION INHIBITION USING PURIFIED TANNIN IN HCl MEDIUM

 

(Peningkatan Perencat Kakisan Menggunakan Tanin Tertulen dalam Medium HCl)

 

Hatika Kaco1, Nur Atiqah Abu Talib2, Sarani Zakaria2*, Sharifah Nabihah Syed Jaafar2, Norinsan Kamil Othman3, Chin Hua Chia2, Sinyee Gan2

 

1Kolej PERMATA Insan,

Universiti Sains Islam Malaysia, PERMATA Insan Complex,Bandar Baru Nilai, 71800 UKM Nilai, Negeri Sembilan, Malaysia

2Bioresources and Biorefinery Laboratory, Faculty of Science and Technology

3School of Applied Physics, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  szakaria@ukm.edu.my

 

 

Received: 4 June 2018; Accepted: 7 November 2018

 

 

Abstract

Tannin was successfully extracted from Gelam bark using acetone as the solvent as natural alternatives. The extracted tannin was then used as corrosion inhibitor for mild steel under acidic medium. The gravimetric and electrochemical potentiodynamic corrosion tests were executed at different purified and unpurified tannin concentrations (200-800 ppm) to test the ability to inhibit mild steel corrosion. The results showed that the corrosion rate decreased as tannin concentration increased while the inhibition efficiency increased. The isotherm adsorption found that the Langmuir model was the best model to represent the interaction of tannin inhibitor and the active sites on mild steel surface. The SEM analysis showed that the mild steel morphology changed after the addition of tannin. The presence of blue-black color on the mild steel surface indicated the formation of ferric tannate to protect the surface of mild steel. In conclusion, purified tannin was a better inhibitor compared to unpurified tannin on mild steel in 1 M HCl.

 

Keywords:  corrosion rate, extraction, gelam bark, green inhibitor, Langmuir

 

Abstrak

Tanin telah berjaya diekstrak daripada kulit Gelam menggunakan aseton sebagai pelarut. Tanin yang diekstrak kemudian digunakan sebagai perencat kakisan untuk keluli lembut dalam medium berasid. Ujian kakisan gravimetrik dan potensiodinamik elektrokimia dikaji pada kepekatan tanin tulen dan tidak tulen yang berbeza (200-800 ppm) ke atas kebolehan untuk merencat kekisan keluli lembut. Ia menunjukkan bahawa kadar kakisan berkurang dengan peningkatan kepekatan tanin manakala kecekapan perencatan meningkat. Lengkung suhu penjerapan mendapati bahawa model Langmuir merupakan model terbaik untuk menjelaskan interaksi perencat tanin dan tapak aktif permukaan keluli lembut. Morfologi keluli lembut berubah selepas penambahan tanin seperti dalam analisis SEM. Kehadiran warna biru hitam pada permukaan keluli lembut menunjukkan pembentukan ferik tanat untuk melindungi permukaan keluli lembut. Sebagai kesimpulan, tanin tertulen menunjukkan perencatan yang lebih baik berbanding tannin tak tulen keatas keluli lembut dalam 1 M HCl.

 

Kata kunci:  kadar kakisan, pengekstrakan, kulit gelam, perencat hijau, Langmuir

 

References

1.       Benali, O., Benmehdi, H., Hasnaoui, O., Selles, C. and Salghi, R. (2013). Green corrosion inhibitor: Inhibitive action of tannin extract of chamaerops humilis plant for the corrosion of mild steel in 0.5M H2SO4. Journal of Materials and Environmental Science, 4:127-138.

2.       Tan, K. W. and Kassim, M. J. (2011). A correlation study on the phenolic profiles and corrosion inhibition properties of mangrove tannins (Rhizophora apiculata) as affected by extraction solvents. Corrosion Science, 53: 569-574.

3.       Iloamaeke, I. M., Onuegbu, T. U., Ajiwe, V. I. E. and Umeobika, U. C. (2012). Corrosion inhibition of mild steel by Pterocarpus soyauxi leaves extract in HCl medium. International Journal of Plant, Animal and Environmental Sciences, 2: 22-28.

4.       Okafor, P. C., Ebenso, E. E. and Ekpe, E. J. (2010). Azadirachta indica extracts as corrosion inhibitor for mild steel in acid medium. International Journal of Electrochemical Science, 5: 978-993.

5.       Oki, M., Charles, E. Alaka, C. and Oki, T. K.  (2011). Corrosion inhibition of mild steel in hydrochloric acid by tannins from Rhizophora racemose. Materials Sciences and Applications, 2: 592-595.

6.       Umoren, S. A., Ogbobe, O., Igwe, I. O. and Ebenso E. E. (2008). Inhibition of mild steel in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives. Corrosion Science, 50: 1998-2006.

7.       Al-Amiery, A. A., Kassim, F. A., Kadhum, A. A. H. and Mohamad A. B. (2016). Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid.  Scientific Reports, 6:19890-19912.

8.       Shah, A. M., Rahim, A. A., Hamid, S. A. and Yahya, S. (2013). Green inhibitors for copper corrosion by mangrove tannin. International Journal of Electrochemical Science, 8: 2140-2153.

9.       Chigondo, M. and Chigondo, F. (2016). Recent natural corrosion inhibitors for mild steel: an overview. Journal of Chemistry, 2016: 1-7.

10.    Rahim, A. A., Rocca, E. and Steinmetz, J. (2007).  Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium. Corrosion Science, 49: 402-417.

11.    Rahim, A. A. and Kassim, J. (2008). Recent development of vegetal tannins in corrosion protection of iron and steel. Recent Patents on Materials Science, 1: 223-231.

12.    Rahim, A. A., Rocca, E., Steinmetz, J., Kassim, M. J., Adnan, R. and Sani Ibrahim, M. (2008). Inhibitive action of mangrove tannins and phosphoric acid on pre-rusted steel via electrochemical methods. Corrosion Science. 50: 1546-1550.

13.    Peres, R. S., Cassel, E. and Azambuja, D. S. (2012). Black wattle tannin as steel corrosion inhibitor. ISRN Corrosion, :1−9.

14.    Fouda, A. S., Megahed, H. E., Fouad, N. and Elbahrawi, N.M. (2016).  Corrosion  inhibition of carbon steel in 1 M hydrochloric acid solution by aqueous extract of Thevetia peruviana. Journal of Bio- and Tribo-Corrosion, 2(3): 16.

15.    Barbosa, V., Ramires, E. C., Razera, I. A. T. and Frollini, E. (2010). Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Industrial Crops and Products, 32: 305-312.

16.    Elgailani, I. E. H. and Ishak, C. Y. (2016). Methods for extraction and characterization of tannins from some acacia species of Sudan. Pakistan Journal of Analytical & Environmental Chemistry. 17: 43-49.

17.    Mailoa, M. N., Mahendradatta, M., Laga, M. and Djide, N. (2013). Tannin extract of guava leaves (Psidium Guajava L) variation with concentration organic solvents. International Journal of Scientific & Technology Research, 2:106-110.

18.    Kundu, M., Prasad, S. K. and Kumar, V. (2016). A review article on green inhibitors of reinforcement concrete corrosion. International Journal of Emerging Research in Management &Technology, 5: 42-46.

19.    Oo, C. W., Kassim, M. J. and Pizzi, A. (2009). Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper(II) and lead(II). Industrial Crops and Products, 30: 152-161.

20.    Behpour, M., Ghoreishi, S. M., Mohammadi, N., Soltani, N. and Salavati-Niasari, M. (2010). Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corrosion Science, 52: 4046-4057.

21.    Bakarudin, S. B., Zakaria, S., Chia, C. H. and Jani, S. M. (2012). Liquefied residue of kenaf core wood produced at different phenol-kenaf ratio. Sains Malaysiana, 41: 225-231.

22.    Li, J., Li, C., Wang, W., Zhang, W. and Li, J. (2016). Reactivity of larch and valonia tannins in synthesis of tannin-formaldehyde resins. Bioresources, 11: 2256-2268.

23.    Manimegalai, S. and Manjula, P. (2015). Thermodynamic and adsorption studies for corrosion inhibition of mild steel in aqueous media by Sargasam swartzii (brown algae). Journal of Materials and Environmental Science, 6: 1629-1637.

24.    Shukla, S. K, Singh, A. K. and Quraishi, M. A. (2011). Corrosion inhibition and adsorption properties of n-phenylhydrazine-1,2-dicarbothioamide on mild steel in hydrochloric acid. International Journal of Electrochemical Science, 6: 5779-5791.

25.    Peme, T., Olasunkanmi, L. O., Bahadur, I., Adekunle, A. S., Kabanda, M. M. and Ebenso, E. E. (2015). Adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions. Molecules, 20: 16004-16029.

26.    Emregul, K. C. and Hayvali, M. (2006). Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2 M HCl. Corrosion Science, 48: 797-812.

27.    Chia, C. H., Razali, N. F., Sajab, M. S., Zakaria, S., Huang, N. M. and Lim, H. N. (2013). Methylene blue adsorption on graphene oxide. Sains Malaysiana, 42: 819-826.

28.    Singh, A., Pramanik, T., Kumar, A. and Gupta, M. (2013). Phenobarbital: A new and effective corrosion inhibitor for mild steel in 1M HCl solution. Asian Journal of Chemistry. 25(17): 9808-9812.

 




Previous                    Content                    Next