Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 1023 - 1030
DOI:
10.17576/mjas-2018-2206-12
DIIMIDE
REDUCTION OF LIQUID NATURAL RUBBER IN HYDRAZINE HYDRATE/HYDROGEN PEROXIDE
SYSTEM: A SIDE REACTION STUDY
(Penurunan Diimida Getah Asli Cecair dalam Sistem
Hidrazin Hidrat/Hidrogen Peroksida: Kajian Tindak Balas Sampingan)
Muhammad Jefri Mohd Yusof1, Nur
Aidasyakirah Mohd Tahir1, Fazira Firdaus1, Siti Fairus M.
Yusoff1,2*
1School of Chemical Sciences and Food Technology, Faculty
of Science and Technology
2Polymer Research Centre, Faculty of Science and
Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: sitifairus@ukm.edu.my
Received: 27
July 2017; Accepted: 28 April 2018
Abstract
Hydrogenation
of liquid natural rubber (LNR) has been successfully accomplished via diimide
reduction using hydrazine hydrate/hydrogen peroxide (HH/H2O2)
system. Each parameter in the system was optimized to obtain maximum
hydrogenation degree such as the mass of boric acid, mole ratio of HH: H2O2,
reaction time and reaction temperature. As a result, the highest degree of
hydrogenation was achieved at 91.2% using a molar ratio HH: H2O2
of 2:3, in the presence of boric acid as a promoter at 60 °C for 8 hours.
In this research, we report on possible side reactions that led to lowering the
hydrogenated rubber product. Reactivity of diimide species as well as
decomposition of hydrogen peroxide were postulated based on literature reviews
to be one of the factors hindering hydrogenation of LNR. The presence of side
reactions such as degradation, cyclization, and crosslinking had been confirmed
by gel permeation chromatography (GPC), 1H nuclear magnetic
resonance (1H NMR), and swelling test, respectively.
Keywords: hydrogenation, liquid natural rubber, side
reactions, hydrazine hydrate, hydrogen peroxide
Abstrak
Penghidrogenan getah asli
cecair (LNR) telah berjaya dijalankan menggunakan sistem hidrazin
hidrat/hidrogen peroksida (HH/H2O2). Setiap parameter
dalam sistem tersebut dioptimumkan bagi mendapatkan darjah penghidrogenan yang
maksimum seperti jisim asid borik, nisbah mol HH: H2O2,
masa dan suhu tindak balas. Hasilnya, peratus penghidrogenan sebanyak 91.2%
diperolehi apabila menggunakan nisbah molar HH: H2O2
sebanyak 2:3, dalam kehadiran asid borik sebagai penggalak pada suhu 60 °C
selama 8 jam. Dalam kajian ini, kami melaporkan tindak balas sampingan yang
berkemungkinan berlaku yang menyebabkan pengurangan hasil getah terhidrogen. Berdasarkan
kajian-kajian lepas, kereaktifan spesis diimida dan penguraian hidrogen
peroksida dipercayai merupakan antara faktor yang merencatkan penghidrogenan
LNR. Kehadiran tindak balas balas sampingan seperti degradasi, pengkitaran, dan
taut silang telah dikenal pasti masing-masing melalui kromatografi penelapan
gel (GPC), resonans magnetik nuklear proton, dan ujian bengkakan.
Kata kunci: penghidrogenan, getah asli cecair, tindak
balas sampingan, hidrazin hidrat, hidrogen peroksida
References
1.
Zhou, S., Bai, H. and Wang, J. (2004). Hydrogenation of
acrylonitrile–butadiene rubber latexes. Journal
of Applied Polymer Science, 91(4): 2072-2078.
2.
Jamaluddin N., Mohd Yusof M. J., Abdullah I. and M. Yusoff S.F.
(2016). Synthesis, characterization, and properties of hydrogenated liquid
natural rubber. Rubber Chemical Technology,
89(2): 227-239.
3.
Lin X., Pan Q. and Rempel G. L. (2004). Cupric ion catalyzed
diimide production from the reaction between hydrazine and hydrogen peroxide. Applied Catalysis A: General, 263 (1): 27
– 32.
4.
Simma K., Rempel G. L. and Prasassarakich P. (2009).
Improving thermal and ozone stability of skim natural rubber by diimide
reduction. Polymer Degradation and Stability,
94(11): 1914-1923.
5.
Yusof M. J. M., Jamaluddin N., Abdullah I. and Yusoff, S. F. M.
(2015). Hydrogenation of liquid natural rubber via diimide reduction in
hydrazine hydrate/hydrogen peroxide system. AIP
Conference Proceeding, 1678: 050001
6.
Samran J., Phinyocheep P., Daniel P. and Kittipoom S. (2005).
Hydrogenation of unsaturated rubbers using diimide as a reducing agent. Journal of Applied Polymer Science, 95(1):
16-27.
7.
De Sarkar M., De P. P. and Bhowmick A. K. (2000). Diimide reduction
of carboxylated styrene–butadiene rubber in latex stage. Polymer, 41(3): 907-915.
8.
Kongparakul S., Prasassarakich P. and Rempel G. L. (2008). Effect of grafted methyl methacrylate on the
catalytic hydrogenation of natural rubber. European
Polymer Journal, 44(6): 1915-1920.
9.
Wang, X., Zhang, L., Han, Y., Shi, X., Wang, W. and Yue, D.
(2013). New method for hydrogenating NBR latex. Journal of Applied Polymer Science, 127(6), 4764-4768.
10.
Han Y., Su L. and Mao L. (2014). Self-cross-Linking hydrogenated
nitrile-butadiene rubber latex/polyvinyl chloride emulsion composite film and
its properties. Polymer-Plastics Technology
and Engineering, 53(3): 306-311.
11.
Huang G., Yu Q. and Cai M. (2016). Highlighting the effect of
interfacial interaction on tribological properties of supramolecular gel
lubricants. Advanced Materials Interfaces,
3(3): 1500489.
12.
Sojoudiasli H., Heuzey M. C. and Carreau P. J. (2014).
Rheological, morphological and mechanical properties of flax fiber
polypropylene composites: influence of compatibilizers. Cellulose, 21(5): 3797-3812.
13.
Tu X., Liu M. and Wei H. (2016). Recent progress on cyclic
polymers: Synthesis, bioproperties, and biomedical applications. Journal of Polymer Science Part A: Polymer
Chemistry, 54(11): 1447-1458.
14.
Pisuttisap, A., Hinchiranan, N., Rempel, G. L. and
Prasassarakich, P. (2013). ABS modified with hydrogenated
polystyrene-grafted-natural rubber. Journal
of Applied Polymer Science, 129 : 94-104.
15.
De Sarkar M., De P. P. and Bhowmick A. K. (1997)
Thermoplastic elastomeric hydrogenated styrene-butadiene elastomer: Optimization
of reaction conditions, thermodynamics, and kinetics. Journal of Applied Polymer Science, 66(6) : 1151-1162.
16.
Lin X., Pan Q. and Rempel G. L. (2005). Gel formation in
diimide-hydrogenated polymers. Journal of
Applied Polymer Science, 96(4): 1122-1125.
17.
Kongsinlark A., Rempel G. L. and Prasassarakich P. (2013).
Synthesis of nanosized ethylene-propylene rubber latex via polyisoprene
hydrogenation. Journal of Applied Polymer
Science, 127(5): 3622-3632.
18.
Lenko D., Schlögl S. and Temel A. (2013) Dual crosslinking of
carboxylated nitrile butadiene rubber latex employing the thiol‐ene photoreaction. Journal of Applied Polymer Science, 129(5)
: 2735-2743.
19.
Dinçalp H. and Içli S. (2006). Photoinduced electron
transfer-catalyzed processes of sulfoamino perylene diimide under concentrated
sun light. Solar Energy, 80(3): 332-346.
20.
Jiang D. D., Levchik G. F. and Levchik S. V. (2000). Thermal degradation
of cross-linked polyisoprene and polychloroprene. Polymer Degradation and Stability, 68(1): 75-82.
21.
Hirschl C., Biebl–Rydlo M. and DeBiasio M. (2013). Determining
the degree of crosslinking of ethylene vinyl acetate photovoltaic module
encapsulants—a comparative study. Solar
Energy Materials and Solar Cells, 116 : 203-218.
22.
Khan .F, Kwek D., Kronfli E. and Ahmad S.R. (2007).
Crosslinking of ethylene–propylene (–diene) terpolymer elastomer initiated by
an excimer laser. Polymer Degradation and
Stability, 92(8): 1640-1644.