Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1023 - 1030

DOI: 10.17576/mjas-2018-2206-12

 

 

 

DIIMIDE REDUCTION OF LIQUID NATURAL RUBBER IN HYDRAZINE HYDRATE/HYDROGEN PEROXIDE SYSTEM: A SIDE REACTION STUDY

 

(Penurunan Diimida Getah Asli Cecair dalam Sistem Hidrazin Hidrat/Hidrogen Peroksida: Kajian Tindak Balas Sampingan)

 

Muhammad Jefri Mohd Yusof1, Nur Aidasyakirah Mohd Tahir1, Fazira Firdaus1, Siti Fairus M. Yusoff1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

2Polymer Research Centre, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  sitifairus@ukm.edu.my

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

Hydrogenation of liquid natural rubber (LNR) has been successfully accomplished via diimide reduction using hydrazine hydrate/hydrogen peroxide (HH/H2O2) system. Each parameter in the system was optimized to obtain maximum hydrogenation degree such as the mass of boric acid, mole ratio of HH: H2O2, reaction time and reaction temperature. As a result, the highest degree of hydrogenation was achieved at 91.2% using a molar ratio HH: H2O2 of 2:3, in the presence of boric acid as a promoter at 60 °C for 8 hours. In this research, we report on possible side reactions that led to lowering the hydrogenated rubber product. Reactivity of diimide species as well as decomposition of hydrogen peroxide were postulated based on literature reviews to be one of the factors hindering hydrogenation of LNR. The presence of side reactions such as degradation, cyclization, and crosslinking had been confirmed by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (1H NMR), and swelling test, respectively.

 

Keywords:  hydrogenation, liquid natural rubber, side reactions, hydrazine hydrate, hydrogen peroxide

 

Abstrak

Penghidrogenan getah asli cecair (LNR) telah berjaya dijalankan menggunakan sistem hidrazin hidrat/hidrogen peroksida (HH/H2O2). Setiap parameter dalam sistem tersebut dioptimumkan bagi mendapatkan darjah penghidrogenan yang maksimum seperti jisim asid borik, nisbah mol HH: H2O2, masa dan suhu tindak balas. Hasilnya, peratus penghidrogenan sebanyak 91.2% diperolehi apabila menggunakan nisbah molar HH: H2O2 sebanyak 2:3, dalam kehadiran asid borik sebagai penggalak pada suhu 60 °C selama 8 jam. Dalam kajian ini, kami melaporkan tindak balas sampingan yang berkemungkinan berlaku yang menyebabkan pengurangan hasil getah terhidrogen. Berdasarkan kajian-kajian lepas, kereaktifan spesis diimida dan penguraian hidrogen peroksida dipercayai merupakan antara faktor yang merencatkan penghidrogenan LNR. Kehadiran tindak balas balas sampingan seperti degradasi, pengkitaran, dan taut silang telah dikenal pasti masing-masing melalui kromatografi penelapan gel (GPC), resonans magnetik nuklear proton, dan ujian bengkakan.

 

Kata kunci:  penghidrogenan, getah asli cecair, tindak balas sampingan, hidrazin hidrat, hidrogen peroksida

 

References

1.       Zhou, S., Bai, H. and Wang, J. (2004). Hydrogenation of acrylonitrile–butadiene rubber latexes. Journal of Applied Polymer Science, 91(4): 2072-2078.

2.       Jamaluddin N., Mohd Yusof M. J., Abdullah I. and M. Yusoff S.F. (2016). Synthesis, characterization, and properties of hydrogenated liquid natural rubber. Rubber Chemical Technology, 89(2): 227-239.

3.       Lin X., Pan Q. and Rempel G. L. (2004). Cupric ion catalyzed diimide production from the reaction between hydrazine and hydrogen peroxide. Applied Catalysis A: General, 263 (1): 27 – 32.

4.       Simma K., Rempel G. L. and Prasassarakich P. (2009). Improving thermal and ozone stability of skim natural rubber by diimide reduction. Polymer Degradation and Stability, 94(11): 1914-1923.

5.       Yusof M. J. M., Jamaluddin N., Abdullah I. and Yusoff, S. F. M. (2015). Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system. AIP Conference Proceeding, 1678: 050001

6.       Samran J., Phinyocheep P., Daniel P. and Kittipoom S. (2005). Hydrogenation of unsaturated rubbers using diimide as a reducing agent. Journal of Applied Polymer Science, 95(1): 16-27.

7.       De Sarkar M., De P. P. and Bhowmick A. K. (2000). Diimide reduction of carboxylated styrene–butadiene rubber in latex stage. Polymer, 41(3): 907-915.

8.       Kongparakul S., Prasassarakich P. and Rempel G. L. (2008).  Effect of grafted methyl methacrylate on the catalytic hydrogenation of natural rubber. European Polymer Journal, 44(6): 1915-1920.

9.       Wang, X., Zhang, L., Han, Y., Shi, X., Wang, W. and Yue, D. (2013). New method for hydrogenating NBR latex. Journal of Applied Polymer Science, 127(6), 4764-4768.

10.    Han Y., Su L. and Mao L. (2014). Self-cross-Linking hydrogenated nitrile-butadiene rubber latex/polyvinyl chloride emulsion composite film and its properties. Polymer-Plastics Technology and Engineering, 53(3): 306-311.

11.    Huang G., Yu Q. and Cai M. (2016). Highlighting the effect of interfacial interaction on tribological properties of supramolecular gel lubricants. Advanced Materials Interfaces, 3(3): 1500489.

12.    Sojoudiasli H., Heuzey M. C. and Carreau P. J. (2014). Rheological, morphological and mechanical properties of flax fiber polypropylene composites: influence of compatibilizers. Cellulose, 21(5): 3797-3812.

13.    Tu X., Liu M. and Wei H. (2016). Recent progress on cyclic polymers: Synthesis, bioproperties, and biomedical applications. Journal of Polymer Science Part A: Polymer Chemistry, 54(11): 1447-1458.

14.    Pisuttisap, A., Hinchiranan, N., Rempel, G. L. and Prasassarakich, P. (2013). ABS modified with hydrogenated polystyrene-grafted-natural rubber. Journal of Applied Polymer Science, 129 : 94-104. 

15.    De Sarkar M., De P. P. and Bhowmick A. K. (1997) Thermoplastic elastomeric hydrogenated styrene-butadiene elastomer: Optimization of reaction conditions, thermodynamics, and kinetics. Journal of Applied Polymer Science, 66(6) : 1151-1162.

16.    Lin X., Pan Q. and Rempel G. L. (2005). Gel formation in diimide-hydrogenated polymers. Journal of Applied Polymer Science, 96(4): 1122-1125.

17.    Kongsinlark A., Rempel G. L. and Prasassarakich P. (2013). Synthesis of nanosized ethylene-propylene rubber latex via polyisoprene hydrogenation. Journal of Applied Polymer Science, 127(5): 3622-3632.

18.    Lenko D., Schlögl S. and Temel A. (2013) Dual crosslinking of carboxylated nitrile butadiene rubber latex employing the thiolene photoreaction. Journal of Applied Polymer Science, 129(5) : 2735-2743.

19.    Dinçalp H. and Içli S. (2006). Photoinduced electron transfer-catalyzed processes of sulfoamino perylene diimide under concentrated sun light. Solar Energy, 80(3): 332-346.

20.    Jiang D. D., Levchik G. F. and Levchik S. V. (2000). Thermal degradation of cross-linked polyisoprene and polychloroprene. Polymer Degradation and Stability, 68(1): 75-82.

21.    Hirschl C., Biebl–Rydlo M. and DeBiasio M. (2013). Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Solar Energy Materials and Solar Cells, 116 : 203-218.

22.    Khan .F, Kwek D., Kronfli E. and Ahmad S.R. (2007). Crosslinking of ethylene–propylene (–diene) terpolymer elastomer initiated by an excimer laser. Polymer Degradation and Stability, 92(8): 1640-1644.

 




Previous                    Content                    Next