Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1031 - 1039

DOI: 10.17576/mjas-2018-2206-13

 

 

 

AN ACOUSTIC STUDY OF Shorea leprosula WOOD FIBER FILLED POLYURETHANE COMPOSITE FOAM

 

(Kajian Akustik Busa Komposit Poliuretana Terisi Serat Kayu Shorea leprosula)

 

Muhammad Shafiq Mohd Azahari, Anika Zafiah M. Rus*, Shaharuddin Kormin, M. Taufiq Zaliran

 

Sustainable Polymer Engineering, Advanced Manufacturing and Material Center (SPEN-AMMC),

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

 

*Corresponding author:  zafiah@uthm.edu.my

 

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

Polyurethane foam is an excellent material for sound absorbing materials. This material is produced by mixing crosslinker, and polyol to produce foams with the presence of blowing agent. This study consists of an experimental study on acoustics properties enhancement of polyurethane foam by mixing different weight percentage of Shorea leprosula wood fiber into the polymer matrix. An optimal percent of 5-20% wood fiber was used to obtain a homogeneous mixture. The polymer foam composites acoustic properties were measured by using impedance tube test to obtain the sound absorption coefficient. The polymer foam composites UF80 produced have a better sound absorption coefficient, α of 0.9507. UF80 gives a higher density of 865.5 kg/m3 and smallest pore size of 413.4 µm which is determined by using Mettler Toledo Density kit and Scanning Electron Microscope (SEM) respectively compared to UF. The noise reduction coefficient (NRC) of the polymer foam composites UF80 is twice as high as UF. This studies proved that Shorea Leprosula wood fiber influenced the acoustic properties of polymer foam composites.

 

Keywords:  polyurethane foam, wood fiber, acoustic properties, sound absorption coefficient, noise reduction coefficient

 

Abstrak

Busa poliuretana adalah bahan yang sangat baik untuk bahan menyerap bunyi. Bahan ini dihasilkan dengan mencampurkan penghubung silang, dan poliol untuk menghasilkan busa dengan kehadiran ejen meniup. Kajian ini terdiri daripada kajian mengenai sifat-sifat akustik penambahbaikan busa poliuretana dengan mencampurkan peratusan berat serat kayu Shorea leprosula berbeza ke dalam matriks polimer. Peratus optimum serat kayu 5-20% digunakan untuk mendapatkan campuran homogen. Sifat akustik polimer komposit diukur dengan menggunakan ujian tiub impedans untuk mendapatkan pekali penyerapan bunyi. Polimer komposit UF80 yang dihasilkan mempunyai pekali penyerapan bunyi, α yang lebih baik dengan 0.9507. UF80 memberikan ketumpatan yang lebih tinggi dengan 865.5 kg/m3 dan saiz liang yang lebih kecil dengan 413.4 µm masing-masing ditentukan menggunakan kit ketumpatan Mettler Toledo dan Mikroskopi Pengimbas Elektron (SEM) berbanding UF. Pekali pengurangan hingar (NRC) daripada polimer komposit UF80 adalah dua kali lebih tinggi daripada UF. Kajian ini membuktikan bahawa serat kayu Meranti Merah mempengaruhi sifat akustik busa poliuretana.

 

Kata kunci:  busa poliuretana, serat kayu, sifat akustik, pekali penyerapan bunyi, pekali pengurangan hingar

 

References

1.          Chathurangani, O. S., Perera, W. J. M. K., Kumari, H. M. N. S., Subashi, G. H. M. J. and De Silva, G. S. Y. (2013). Utilization of sawdust and coconut coir fibre as noise reducing wall surface materials. http://dl.lib.mrt.ac.lk/handle/123/8928. [Access online 27 March 2018].

2.          Gayathri, R., Vasanthakumari, R. and Padmanabhan, C. (2013). Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. International Journal of Scientific & Engineering Research, 4(5): 301-308.

3.          Peng, L., Song, B., Wang, J. and Wang, D. (2015). Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester. Advances in Materials Science and Engineering, 2015: 1-5.

4.          Zhu, X., Kim, B. J., Wang, Q. and Wu, Q. (2013). Recent advances in the sound insulation properties of bio-based materials. BioResources, 9(1): 1764-1786.

5.          Maderuelo-Sanz, R., Nadal-Gisbert, A. V., Crespo-Amorós, J. E. and Parres-García, F. (2012). A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Applied Acoustics, 73(4): 402-408.

6.          Gu, R., Sain, M. M. and Konar, S. K. (2013). A feasibility study of polyurethane composite foam with added hardwood pulp. Industrial Crops and Products, 42: 273-279.

7.          Luo, X., Mohanty, A. and Misra, M. (2013). Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Industrial Crops and Products, 47: 13-19.

8.          Mamtaz, H., Fouladi, M. H., Al-Atabi, M. and Namasivayam, S. N. (2016). Acoustic absorption of natural fiber composites. Journal of Engineering, 2016: 1-11.

9.          Chen, S., Jiang, Y., Chen, J. and Wang, D. (2015). The effects of various additive components on the sound absorption performances of polyurethane foams. Advances in Materials Science and Engineering, 2015: 1-9.

10.        Lacoste, C., Basso, M. C., Pizzi, A., Celzard, A., Ella Ebang, E., Gallon, N. and Charrier, B. (2015). Pine (P. pinaster) and Quebracho (S. lorentzii) tannin-based foams as green acoustic absorbers. Industrial Crops and Products, 67: 70-73.

11.        Zulkifli, R., Zulkarnain and Nor, M. J. M. (2010). Noise control using coconut coir fiber sound absorber with porous layer backing and perforated panel. American Journal of Applied Sciences, 7(2): 260-264.

12.        Youneung, L. and Changwhan J. (2003). Sound absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Research Journal, 3(2): 78-84.

13.        Ekici, B., Kentli, A. and Küçük, H. (2012). Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4): 515-520.

14.        Azahari, M. S. M., Rus, A. Z. M., Kormin, S. and Zaliran, M. T. (2017). Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber. IOP Conference Series: Materials Science and Engineering, 244(1): 012009.

15.        Azahari, M. S. M., Rus, A. Z. M., Zaliran, M. T. and Kormin, S. (2017). Improving sound absorption property of polyurethane foams doped with natural fiber. IOP Conference Series: Materials Science and Engineering, 226(1): 012009.

16.        Rus, A. Z. M. and Shafizah, S. (2015). Acoustic behavior of polymer foam composite of Shorea leprosula after UV-irradiation exposure. International Journal of Mechanical, Aerospace, Industrial and Mechatronics and Manufacturing Engineering, 9(1): 188-192.

17.        Rus, A. Z. M., Azahari, M. S. M., Kormin, S., Soon, L. B., Zaliran, M. T. and Ahraz Sadrina M. F. L. (2017). Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials. AIP Conference Proceedings, 1877(1): 060004.

18.        Berardi, U. and Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94: 840-852.

19.        Soto, G., Castro, A., Vechiatti, N., Iasi, F., Armas, A., Marcovich, N. E. and Mosiewicki, M. (2017). Biobased porous acoustical absorbers made from polyurethane and waste tire particles. Polymer Testing, 57: 42-51.

20.        Sa'adon, S. and Rus, A. Z. M. (2013). Utilization of treated red meranti wood dust as polymer foam composite for acoustic study. Key Engineering Materials, 594-595: 760-764.

21.        Nandanwar, A., Kiran, M. C. and Varadarajulu, K. C. (2017). Influence of density on sound absorption coefficient of fibre board. Open Journal of Acoustics, 7: 1-9.

22.        Sa'adon, S. and Rus, A. Z. M. (2014). Acoustical behavior of treated wood dust-filler for polymer foam composite. Applied Mechanics and Materials, 465-466: 1039-1043.

 

 




Previous                    Content                    Next