Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 1031 - 1039
DOI:
10.17576/mjas-2018-2206-13
AN ACOUSTIC
STUDY OF Shorea leprosula WOOD FIBER
FILLED POLYURETHANE COMPOSITE FOAM
(Kajian Akustik Busa Komposit Poliuretana Terisi Serat
Kayu Shorea leprosula)
Muhammad Shafiq
Mohd Azahari, Anika Zafiah M. Rus*, Shaharuddin Kormin, M. Taufiq Zaliran
Sustainable
Polymer Engineering, Advanced Manufacturing and Material Center (SPEN-AMMC),
Faculty
of Mechanical and Manufacturing Engineering,
Universiti
Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
*Corresponding
author: zafiah@uthm.edu.my
Received: 27
July 2017; Accepted: 28 April 2018
Abstract
Polyurethane foam is an excellent material for sound absorbing materials. This
material is produced by mixing crosslinker, and polyol to produce foams with
the presence of blowing agent. This study consists of an experimental study on
acoustics properties enhancement of polyurethane foam by mixing different
weight percentage of Shorea leprosula wood fiber into the polymer
matrix. An optimal percent of 5-20% wood fiber was
used to obtain a homogeneous mixture. The
polymer foam composites acoustic properties were
measured by using impedance tube test to obtain the sound absorption
coefficient. The polymer foam composites UF80 produced have a better sound absorption coefficient, α of
0.9507. UF80 gives a higher
density of 865.5 kg/m3 and smallest pore size of 413.4 µm which is
determined by using Mettler Toledo Density kit and Scanning Electron Microscope
(SEM) respectively compared to UF. The noise reduction coefficient (NRC) of the
polymer foam composites UF80 is twice as high as UF. This studies proved that Shorea Leprosula wood fiber
influenced the acoustic properties of polymer foam composites.
Keywords: polyurethane foam, wood fiber, acoustic
properties, sound absorption coefficient, noise reduction coefficient
Abstrak
Busa
poliuretana adalah bahan yang sangat baik untuk bahan menyerap bunyi. Bahan ini
dihasilkan dengan mencampurkan penghubung silang, dan poliol untuk menghasilkan
busa dengan kehadiran ejen meniup. Kajian ini terdiri daripada kajian mengenai
sifat-sifat akustik penambahbaikan busa poliuretana dengan mencampurkan
peratusan berat serat kayu Shorea leprosula
berbeza ke dalam matriks polimer. Peratus optimum serat kayu 5-20% digunakan
untuk mendapatkan campuran homogen. Sifat akustik polimer komposit diukur dengan
menggunakan ujian tiub impedans untuk
mendapatkan pekali penyerapan bunyi. Polimer komposit UF80 yang
dihasilkan mempunyai pekali penyerapan bunyi, α yang lebih baik dengan 0.9507.
UF80 memberikan ketumpatan yang lebih tinggi dengan 865.5 kg/m3
dan saiz liang yang lebih kecil dengan 413.4 µm masing-masing ditentukan
menggunakan kit ketumpatan Mettler Toledo dan Mikroskopi Pengimbas Elektron
(SEM) berbanding UF. Pekali pengurangan hingar (NRC) daripada polimer komposit
UF80 adalah dua kali lebih tinggi daripada UF. Kajian ini
membuktikan bahawa serat kayu Meranti Merah mempengaruhi sifat akustik busa
poliuretana.
Kata kunci: busa poliuretana, serat kayu, sifat akustik, pekali
penyerapan bunyi, pekali pengurangan hingar
References
1.
Chathurangani,
O. S., Perera, W. J. M. K., Kumari, H. M. N. S., Subashi, G. H. M. J. and De
Silva, G. S. Y. (2013). Utilization of sawdust and coconut coir fibre as noise
reducing wall surface materials. http://dl.lib.mrt.ac.lk/handle/123/8928.
[Access online 27 March 2018].
2.
Gayathri,
R., Vasanthakumari, R. and Padmanabhan, C. (2013). Sound absorption, thermal
and mechanical behavior of polyurethane foam modified with nano silica, nano
clay and crumb rubber fillers. International
Journal of Scientific & Engineering Research, 4(5): 301-308.
3.
Peng,
L., Song, B., Wang, J. and Wang, D. (2015). Mechanic and acoustic properties of
the sound-absorbing material made from natural fiber and polyester. Advances in Materials Science and
Engineering, 2015: 1-5.
4.
Zhu,
X., Kim, B. J., Wang, Q. and Wu, Q. (2013). Recent advances in the sound
insulation properties of bio-based materials. BioResources, 9(1): 1764-1786.
5.
Maderuelo-Sanz,
R., Nadal-Gisbert, A. V., Crespo-Amorós, J. E. and Parres-García, F. (2012). A
novel sound absorber with recycled fibers coming from end of life tires (ELTs).
Applied Acoustics, 73(4): 402-408.
6.
Gu,
R., Sain, M. M. and Konar, S. K. (2013). A feasibility study of polyurethane
composite foam with added hardwood pulp. Industrial
Crops and Products, 42: 273-279.
7.
Luo,
X., Mohanty, A. and Misra, M. (2013). Lignin as a reactive reinforcing filler
for water-blown rigid biofoam composites from soy oil-based polyurethane. Industrial Crops and Products, 47:
13-19.
8.
Mamtaz,
H., Fouladi, M. H., Al-Atabi, M. and Namasivayam, S. N. (2016). Acoustic
absorption of natural fiber composites. Journal
of Engineering, 2016: 1-11.
9.
Chen,
S., Jiang, Y., Chen, J. and Wang, D. (2015). The effects of various additive
components on the sound absorption performances of polyurethane foams. Advances in Materials Science and
Engineering, 2015: 1-9.
10.
Lacoste,
C., Basso, M. C., Pizzi, A., Celzard, A., Ella Ebang, E., Gallon, N. and
Charrier, B. (2015). Pine (P. pinaster)
and Quebracho (S. lorentzii)
tannin-based foams as green acoustic absorbers. Industrial Crops and Products,
67: 70-73.
11.
Zulkifli,
R., Zulkarnain and Nor, M. J. M. (2010). Noise control using coconut coir fiber
sound absorber with porous layer backing and perforated panel. American Journal of Applied Sciences,
7(2): 260-264.
12.
Youneung,
L. and Changwhan J. (2003). Sound
absorption properties of recycled polyester fibrous assembly absorbers. AUTEX Research Journal, 3(2): 78-84.
13.
Ekici,
B., Kentli, A. and Küçük, H. (2012). Improving sound absorption property of
polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4): 515-520.
14.
Azahari,
M. S. M., Rus, A. Z. M., Kormin, S. and Zaliran, M. T. (2017). Acoustic
properties of polymer foam composites blended with different percentage
loadings of natural fiber. IOP Conference
Series: Materials Science and Engineering, 244(1): 012009.
15.
Azahari,
M. S. M., Rus, A. Z. M., Zaliran, M. T. and Kormin, S. (2017). Improving sound
absorption property of polyurethane foams doped with natural fiber. IOP Conference Series: Materials Science and
Engineering, 226(1): 012009.
16.
Rus,
A. Z. M. and Shafizah, S. (2015). Acoustic behavior of polymer foam composite
of Shorea leprosula after
UV-irradiation exposure. International
Journal of Mechanical, Aerospace, Industrial and Mechatronics and Manufacturing Engineering, 9(1): 188-192.
17.
Rus,
A. Z. M., Azahari, M. S. M., Kormin, S., Soon, L. B., Zaliran, M. T. and Ahraz
Sadrina M. F. L. (2017). Hybrid waste filler filled bio-polymer foam composites
for sound absorbent materials. AIP
Conference Proceedings, 1877(1): 060004.
18.
Berardi,
U. and Iannace, G. (2015). Acoustic characterization of natural fibers for
sound absorption applications. Building
and Environment, 94: 840-852.
19.
Soto,
G., Castro, A., Vechiatti, N., Iasi, F., Armas, A., Marcovich, N. E. and
Mosiewicki, M. (2017). Biobased porous acoustical absorbers made from
polyurethane and waste tire particles. Polymer
Testing, 57: 42-51.
20.
Sa'adon,
S. and Rus, A. Z. M. (2013). Utilization of treated red meranti wood dust as
polymer foam composite for acoustic study. Key
Engineering Materials, 594-595: 760-764.
21.
Nandanwar,
A., Kiran, M. C. and Varadarajulu, K. C. (2017). Influence of density on sound
absorption coefficient of fibre board. Open
Journal of Acoustics, 7: 1-9.
22.
Sa'adon,
S. and Rus, A. Z. M. (2014). Acoustical behavior of treated wood dust-filler
for polymer foam composite. Applied
Mechanics and Materials, 465-466: 1039-1043.