Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1040 - 1047

DOI: 10.17576/mjas-2018-2206-14

 

 

 

POLYURETHANE MEMBRANE AS AN ADSORBENT FOR METHYL ORANGE AND ETHYL VIOLET DYES

 

(Membran Poliuretana Sebagai Penjerap untuk Pewarna Metil Oren dan Etil Ungu Lembayung)

 

Khairiah Haji Badri1,2*, Fatem Hamimie Ismail1, Amira Shakim Abdul Shakir1, Sharifah Mohamad3,

Hawa Aqilah Hamuzan1, Nur Syakilla Hassan1

 

1Polymer Research Center, Faculty of Science and Technology

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry, Faculty of Science,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corressponding author: kaybadri@ukm.edu.my

 

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

Ethyl violet (EV) and methyl orange (MO) are commercial dyes used in a large number of industries. Due to their complex chemical structures and synthetic nature, these dyes are highly stable to light and oxidation, making them non-biodegradable, highly toxic, carcinogenic and mutagenic in nature. Among all techniques, adsorption continues to attract considerable attention due to its simplistic approach and numerous benefits such as greater efficiency, capacity to remove dyes on a large scale, ease of recovery, and recyclability of adsorbents. A palm-based polyurethane (PU) membrane has been synthesised into adsorbent and its ability to adsorb the dye molecules was investigated. The PU membrane was produced via condensation polymerisation between palm-based monoester (PKOp) and 4,4-methylene diphenyl diisocyanate (MDI) with acetone as the solvent. The FTIR spectrum has confirmed the formation of urethane linkage (HN-(C)O) through the presence of N-H, C-NH, C-O-C and C=O urethane peaks which were observed at 3293 cm-1, 1602cm-1, 1221 cm-1 dan 1716 cm-1, respectively. Tensile testing has demonstrated that as the thickness of membrane is increased, the elasticity also increased proportionally with increasing tensile strain ranging from 6.7 MPa to 7.42 MPa. Various adsorption parameters such as initial concentration of dyes, effect of pH, effect of adsorbent dosage and contact time were studied and optimised. The adsorption study revealed that approximately 99% of EV and 25% of MO was adsorbed by the PU membrane within a short duration of 30 minutes. The parameters were determined from Langmuir, Freundlich and Temkin adsorption isotherm models. The isotherm studies specified that the adsorption of PU membrane towards EV and MO dyes is well fitted to the Langmuir model with the value of the maximum adsorption capacities for monolayer adsorption at 9.461 mg/g for EV and 4.340 mg/g for MO.

 

Keywords:  polyurethane membrane, adsorption, ethyl violet, methyl orange, adsorption isotherm

 

Abstrak

Etil ungu lembayung (EUL) dan metil oren (MO) adalah pewarna komersial yang digunakan dengan banyaknya dalam industri. Pewarna ini adalah sangat stabil di bawah dedahan cahaya dan pengoksidaan disebabkan oleh struktur kimianya yang komplek dan sifat sintetiknya menjadikannya tidak terbiodegradasi, sangat bertoksik, karsinogenik dan mutagenik. Penjerapan adalah kaedah yang semakin mendapat perhatian disebabkan pendekatannya yang ringkas dan kepentingan lain seperti keberkesanan yang tinggi, kemampuan menyingkirkan pewarna pada skala besar, perolehan semula yang mudah dan kitar-semula penjerap. Membran PU telah dihasilkan melalui tindak balas pra-pempolimeran antara monoester berasaskan poliol sawit (PKO-p) dan 4,4-metilena difenil diisosianat (MDI). Pencirian membran PU dijalankan melalui analisis spektroskopi FTIR, FESEM serta ujian regangan. Kehadiran tulang belakang uretana dikenalpasti dalam spektrum FTIR membran PU dengan kehadiran puncak N-H, CNH, C-O-C dan C=O masing-masing dikesan pada nombor gelombang 3293 cm-1, 1602cm-1, 1221 cm-1 dan 1716 cm-1. Ujian regangan menunjukkan pertambahan dalam ketebalan membran meningkatkan terikan regangan dalam julat 6.7 MPa sehingga 7.42 MPa. Beberapa parameter penjerapan seperti kepekatan awal pewarna, kesan pH, kesan dos penjerap dan masa sentuhan telah dikaji dan dioptimumkan. Kajian penjerapan mendapati kira-kira 99% EUL dan 25% MO telah dijerap oleh membran PU dalam tempoh yang singkat iaitu 30 minit. Parameter ini ditentukan melalui model penjerapan isoterma Langmuir, Freundlich dan Temkin. Kajian isoterma ini mendapati penjerapan membran PU terhadap EUL dan MO adalah bertepatan dengan model Langmuir dengan nilai maksima kapasiti penjerapan sebanyak 9.461 mg/g untuk EUL dan 4.340 mg/g untuk MO.

 

Kata kunci:  membran poliuretana, penjerapan, etil ungu lembayung, metil oren, isoterma penjerapan

 

References

1.          Beydilli, M., Pavlostathis, S. and Tincher, W. (1998). Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Science and Technology, 38(4-5): 225-232.

2.          Bayramoğlu, G. and Arica, M. Y. (2007). Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p (GMA-MMA-EGDMA) beads. Journal of Hazardous Materials, 144(1): 449-457.

3.          Bechtold, T., Burtscher, E. and Turcanu, A. (2001). Cathodic decolourisation of textile waste water containing reactive dyes using a multi- cathode electrolyser. Journal of Chemical Technology and Biotechnology, 76(3): 303-311.

4.          Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. and A. Idris. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1): 1-13.

5.          Culp, S. J. and Beland, F. A. (1996). Malachite green: a toxicological review. International Journal of Toxicology, 15(3): 219-238.

6.          Srivastava, S., Sinha, R. and Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3): 319-329.

7.          Attia, A. A., Girgis, B. S. and Fathy, N. A. (2008). Removal of methylene blue by carbons derived from peach stones by H3 PO4 activation: batch and column studies. Dyes and Pigments, 76(1): 282-289

8.          Queiroz, D. P. and De Pinho, M. N. (2005). Structural characteristics and gas permeation properties of polydimethylsiloxane/poly (propylene oxide) urethane/urea bi-soft segment membranes. Polymer, 46(7): 2346-2353.

9.          Sadeghi, M., Semsarzadeh, M. A., Barikani, M. and Ghalei, B. (2010). The effect of urethane and urea content on the gas permeation properties of poly (urethane-urea) membranes. Journal of Membrane Science, 354(1): 40-47.

10.      Li, H., Freeman, B. D. and Ekiner, O. M. (2011). Gas permeation properties of poly (urethaneurea) s containing different polyethers. Journal of Membrane Science, 369(1): 49-58.

11.      Clemitson, I. (2011). Polyurethane casting prime edition. CRC Press, New York.

12.      Shahabuddin, S., Sarih, N. M., Mohamad, S. and Baharin, S. N. A. (2016). Synthesis and characterization of Co3O4 nanocube-doped polyaniline nanocomposites with enhanced methyl orange adsorption from aqueous solution. RSC Advances, 6(49): 43388-43400.

 




Previous                    Content                    Next