Malaysian Journal of Analytical Sciences
Vol 22 No 6 (2018): 1048 - 1056
DOI:
10.17576/mjas-2018-2206-15
DETERMINATION OF GLUCOSE CONTENTS IN KENAF
(Penentuan Kandungan Glukosa dalam
Kenaf)
Fatin
Afifah Ahmad Kuthi1, Nurulhuda Mohd Yunus1, Goh Kae Horng1,
Khairiah Haji Badri1,2*
1School of
Chemical Sciences and Food Technology, Faculty of Science and Technology
2Polymer
Research Center, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: kaybadri@ukm.edu.my
Received: 27
July 2017; Accepted: 28 April 2018
Abstract
Kenaf is one of the potential plant fibres used in
research on the extraction and recovery of glucose. Kenaf fiber is comprised of
a kenaf core (KC) and kenaf bast (KB). This study was performed to explore a
hot water pre-treatment (HWP) using boiling water immersion for 2 hours on both
KC and KB. Alkaline treatment using 6% (w/v) sodium hydroxide (NaOH) aqueous
solution was subsequently performed for 3 hours at room temperature. The
percentages of a-cellulose and hemicellulose in both KC and KB were found to increase
after HWP. On the contrary, the percentages of a-cellulose and hemicellulose decreased upon NaOH
treatment. The percentage of Klason lignin was reduced when KC and KB had
undergone the HWP and NaOH treatments. A Fourier transform infrared
spectroscopy analysis (FTIR) revealed the removal of lignin from both parts of
kenaf fibre after the NaOH treatment. This was confirmed when the peaks at 1735
cm-1 and 1246 cm-1 disappeared
after the treatment. Glucose as part of carbohydrates was determined in the fibre
and filtrate using phenol sulfuric (PS) and dinitrosalicylic acid (DNS)
analyses respectively. PS analysis indicated that the amount of glucose in
KC-HWP (0.17 mg/g) was higher than in untreated KC (0.13 mg/g) and KC-NaOH
(0.09 mg/g). The untreated KB showed the highest glucose content (0.36 mg/g),
followed by KB-HWP (0.29 mg/g) and KB-NaOH (0.18 mg/g). Meanwhile, DNS analysis
disclosed that the glucose concentrations in the KC filtrate for both
treatments were 0.05 mg/mL. In contrast, the DNS analysis for KB showed a
slightly lower glucose concentration in the KB-HWP filtrate (0.062 mg/mL)
compared to the KB-NaOH (0.064 mg/mL). The glucose production was highly
related to the composition of a-cellulose
in the kenaf fibers.
Keywords: carbohydrate,
kenaf fibre, compositional analysis, phenol sulfuric, dinitrosalicylic acid
Abstrak
Kenaf merupakam salah satu serabut tumbuhan yang berpotensi dalam
penyelidikan yang melibatkan pengestrakan dan perolehan glukosa. Serabut kenaf
terdiri daripada dua bahagian iaitu teras (KC) dan kulit (KB). Kajian ini
meneroka pra-rawatan rendaman air mendidih (HWP) selama 2 jam bagi kedua-dua KC
dan KB. Seterusnya, rawatan alkali menggunakan 6% (w/v) larutan akues natrium
hidroksida (NaOH) dijalankan selama 3 jam pada suhu bilik. Peratus kandungan a-selulosa dan hemiselulosa bagi KC dan KB didapati meningkat selepas
pra-rawatan air panas. Sebaliknya, peratusan
a-selulosa dan hemiselulosa
menurun selepas rawatan NaOH. Peratus kandungan
lignin Klason berkurang apabila KC dan KB menjalani rawatan HWP dan NaOH.
Analisis spektroskopi inframerah transformasi Fourier (FTIR) menunjukkan bahawa
berlaku penyingkiran lignin pada kedua-dua bahagian kenaf yang dirawat NaOH. Ia
dapat dibuktikan apabila puncak pada nombor gelombang 1735 cm-1 dan
1246 cm-1 hilang selepas rawatan NaOH dijalankan. Glukosa yang merupakan sebahagian daripada karbohidrat
ditentukan kandungannya di dalam serabut dan filtrat masing-masing menggunakan
kaedah fenol sulfurik (PS) dan asid dinitrosalisilik (DNS). Berdasarkan
analisis PS, kandungan glukosa dalam KC-HWP (0.17 mg/g) adalah lebih tinggi
berbanding sampel KC tidak terawat (0.13 mg/g) dan KC-NaOH (0.09 mg/g). Berbeza
dengan serabut KB di mana sampel KB tidak terawat menunjukkan kandungan glukosa
yang tinggi iaitu 0.36 mg/g diikuti dengan KB-HWP (0.29 mg/g) dan KB-NaOH (0.18
mg/g). Analisis DNS menunjukkan kepekatan filtrat KC-HWP dan KC-NaOH adalah
sama iaitu 0.05 mg/mL. Sebaliknya, analisis DNS bagi KB mempamerkan kepekatan
glukosa yang sedikit rendah dalam filtrat KB-HWP (0.062 mg/mL) berbanding
filtrat KB-NaOH (0.064 mg/mL). Perolehan
glukosa sangat bergantung kepasa kandungan komposisi a-selulosa serabut kenaf.
Kata
kunci: serabut kenaf, analisis
komposisi, karbohidrat, fenol sulfurik, asid dinitrosalisilik
References
1. Ashori, A. (2006). Pulp and paper from
kenaf bast fibers. Fibers and Polymers, 7(1): 26-29.
2.
Ohtani, Y., Mazumder. B. and Sameshima, K. (2001).
Influence of the chemical composition of kenaf bast and core on the alkaline
pulping response. Journal of Wood Science,
47(1): 30-35.
3. Pande H. and Roy, D. N. (1996). Delignification
kinetics of soda pulping of kenaf. Journal of Wood Chemistry and Technology,
16:311-325.
4. Juhaida,
M. F., Paridah, M. T., Mohd Hilmi, M., Sarani, Z., Mohamad Zaki, A. R., and
Jalaluddin, A. 2009. Production of polyurethane from liquefied kenaf (Hisbiscuis cannabinus L.) core for wood
laminating adhesive. Master Thesis, Universiti Putra Malaysia.
5. Kaldor, A. F., Brasher, B. S. and Fuller, M. J. 1992. A
strategy for the development of a kenaf-based pulp and paper industry. Tappi
Journal, 75(1): 87-91.
6. Li
D. (1980). Theory and technology of
fiber crops. Chinese: Shanghai: Scientific and Technological Press.
7. Wolfgang,
D. B., Talmadge, K. W., Keegstra, K. and Albresheim, P. (1973). The structure
of plant cell walls. Plant Physiology, 51: 174-187.
8. Kuthi, F. A. A., Norzali, N. R. A. A. and Badri, K. H. (2016).
Thermal characteristics of microcrystalline cellulose from oil palm
biomass. Malaysian Journal of Analytical Sciences, 20(5):
1112-1122.
9. Li,
X. (2004). Physical, chemical, and mechanical properties of bamboo and its
utilization potential for fiberboard manufacturing. Masters Thesis, Louisiana State University.
10. Kumar,
P., Barrett, D. M., Delwiche, J. M. and Streove, P. (2009). Method for
pretreatment of lignicellulosic biomass for efficient hydrolysis and biofuel
production. Industrial and Engineering Chemistry, 48(8), 3713-3729.
11. Harmsen, P. F. H., Huijgen, W., Bermudez, L. and Bakker, R. (2010). Literature
review of physical and chemical pretreatment processes for lignocellulosic
biomass. Wageningen UR Food & Biobased Research (No. 1184).
12. Agbor,
V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B. (2011). Biomass pretreatment:
Fundamentals toward application. Biotechnology
Advances, 29: 675-685.
13. She,
D., Xu, F., Geng, Z. C., Sun, R. C., Jones, G. L. and Baird, M. S. (2010).
Physicochemical characterization of extracted lignin from sweet sorghum stem. Industrial Crops and Products, 32:21-28.
14. Masuko,
T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., Lee, Y. C. (2005).
Carbohydrates analysis by a phenol-sulfuric acid method in microplate format. Analytical
Biochemistry, 339: 69-72.
15. Negrulescu,
A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A. and Ostafe, V. (2012).
Adapting the reducing sugars method with dinitrosalicylic acid to microtiter
plates and microwave heating. Journal of
Brazilian Chemical Society, 23(12):2176-2182.
16. Hu,
R., Lin, L., Liu, T., Ouyong, P., He, B. and Liu, S. (2008). Reducing sugar
content in hemicellulose hydrolysate by DNS method: A revisit. Journal of Biobased Materials and Bioenergy,
2: 156-161.
17. Hasegawa,
I., Kazuhide, T., Osamu, O. and Kazuhiro, M. (2004). New pretreatment methods
combining a hot water treatment and water/acetone extraction for
thermo-chemical conversion of biomass. Energy and Fuel, 18(3): 755-760.
18. Sun,
R. C., Fang, J. M. and Tomkinson. J. (2000). Delignication of rye straw using
hydrogen peroxide. Industrial Crops and Product, 12: 71-83.
19. Edeerozey,
A. M. M., Akil, H. M., Azhar, A. B. and Ariffin, M. I. Z. (2007). Chemical
modification of kenaf fibers. Materials
Letters, 61(10): 2023-2025.
20. Bachtiar, D., Mohd, S. S., Edisyam, Z., Khalina, A. and Khairul,
Z. H. M. D. (2011). Effect of alkali treatment and a compatibilizing agent on
tensile properties of sugar palm fibre-reinforced high impact polystyrene
composites. Bioresource, 6(4);
4815-4823.
21. Anon. (1984). Moisture in wood paper and paperboard. TAPPI Testing Procedure (TAPPI T207 om-81).
USA.
22. Anon. (1981). Water solubility of wood and pulp. TAPPI Testing Procedure (TAPPI T207 om-81).
USA.
23. Anon. (1997). Alcohol-benzene solubility of pulp. TAPPI Testing Procedure (TAPPI T204 om-97).
USA.
24. Anon. (1983). Alpha-, beta-, and gamma-cellulose of pulp.
TAPPI Testing Procedure (TAPPI T203
om-83). USA.
25. Anon. (1983). Klason lignin of pulp. TAPPI Testing Procedure (TAPPI T222 om-83).
USA.
26. Wise,
L. D., Murphy, M. and D’addiego, A. (1946). Chlorite hollocellulose, its
fractionation and bearing on summative wood analysis and on studies on
hemicellulose. Journal of Paper Trade, 112(2):
35-43.
27. Ibrahim, S. M. (2012). Hidrolisis berenzim ke atas serabut
tandan kosong sawit terawat gliserol akues bagi perolehan glukosa dan xilosa. Thesis
of Master Degree, Universiti Kebangsaan Malaysia.
28. Ling,
T. P. (2013). Penghasilan gula yang boleh difermentasikan melalui dekonstruksi
dan degradasi serat tandan kosong kelapa sawit. Thesis
of Master Degree, Universiti Kebangsaan Malaysia.
29. Farm,
Y. Y., Duduku, K., Ranjin, M. and Bono, A. (2009). Cellulose extraction from
palm karnel oil using liquid phase oxidation. Journal of Engineering and Technology 4(1): 57-68.
30. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y.,
Holtzapple, M. and Ladisch, M. (2005). Features of promising technologies for
pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6):
673-686.
31. Jonoobi, M., Jalaludin, H., Alireza, S.,
Manjusri., M. and Kristiina, O. (2009). Chemical composition, cystallinity, and
thermal degration of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. Bioresource, 4(2) 626-639.
32. Xue L., Tabil, L. G. and Panigrahi, S. (2007).
Chemical treatments of natural fiber for use in natural fiber-reinforced
composites: A review. Journal of Polymer
Environment, 15: 25-33.
33. Ioelovich, M. and Morag, E. (2012). Study of
enzymatic hydrolysis of mild pretreated lignocellulosic biomasses. Bioresource, 7(1): 1040-1052.
34. Trivedi, N., Gupta, V., Reddy, C. R. K. and Jha, B. (2013).
Enzymatic hydrolysis and production of bioethanol from common macrophytic green
alga Ulva fasciata Delile. Bioresource
Technology, 150: 106-112.
35. Pettersen,
C. R. (1984). The chemical composition of wood. Advances in Chemistry, 207: 57-126.
36. Nosbi, N., Akil, H. M., Ishak, Z. M. and Bakar, A. A. (2010).
Degradation of compressive properties of pultruded kenaf fiber reinforced
composites after immersion in various solutions. Materials and Design,
31(10): 4960-4964.
37. Shakhes,
J., Morteza. A. B. M., Farhad, Z., Ahmadreza, S. and Tayebe, S. (2011). Tobacco
residuals as promising lignocellulosic materials for pulp and paper industry. Bioresource Technology, 6(4): 4481-4493.
38. Nosbi,
N., Hazizan, M. A., Ishak, Z. A., and Abu, B. A. (2011). Behavior of kenaf
after immerion in several water conditions. Bioresource,
6(2): 950-960.
39. Pandey,
K. K. (1998). A study of chemical structure of softwood and hardwood and wood
polymers by FTIR spectroscopy. Journal of
Applied Polymer Science, 71: 1969-1975.
40. Schwanninger,
M., Rodrigues, R. C., Pereira, H. and Hinterstoisser, B. (2004). Effects of
short-time vibratory ball milling on the shape of FT-IR spectra of wood and
cellulose. Vibrational Spectroscopy,
36: 23-40.
41. Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A.
H. and Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin
distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial
Crops and Products, 31(1):113-121.
42. Kuthi, F. A. B. A. and Badri, K. H. (2014). Effect of cooking
temperature on the crystallinity of acid hydrolysed-oil palm cellulose. AIP
Conference Proceedings, 1614(1): 456-462.
43. Kuthi, A. F. A., Haji Badri, K. and Mohmad Azman, A. (2015).
X-ray diffraction patterns of oil palm empty fruit bunch fibers with varying
crystallinity. Advanced Materials Research, 1087: 321-328.
44. He,
W., Li, Y., Si, H., Dong, Y., Sheng, F., Yao, X. and Hu, Z. (2006). Molecular
modeling and spectroscopic studies on the binding of guaiacol to human serum
albumin. Journal of Photochemistry and Photobiology A: Chemistry, 182(2):
158-167.
45. Chang,
J. L. and Thompson. J. E. (2010). Characterization of colored products formed
during irradiation of aqueous solutions containing H2O2
and phenolic compounds. Atmospheric Environment 44(4): 541-551.
46. Ciolacu, D., Ciolacu F. and Popa, V. I. (2011).
Amorphous cellulose- structure and characterization, Cellulose Chemistry
Technology, 45: 13-21.
47. Mahato, D. N., Mathur, B. K. and
Bhattacherjee, S. (2013). DSC and IR methods for determination of accessibility
of cellulosic coir fibre and thermal degradation under mercerization. Indian
Journal of Fibre & Textile Research, 38: 96-100.
48. Wenzl,
H. F. J. (1970). The acid hydrolysis of wood. The Chemical Technology of
Wood, Academic Press Inc., New York: pp. 157-252.
49. Takahashi, N. and Koshijima, T. (1986).
Molecular properties of
lignin-carbohydrate complexes from beech (Fagus
crenata) and pine (Pinus densiflora)
woods. Wood Science and Technology, 22:
177-189.