Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 1048 - 1056

DOI: 10.17576/mjas-2018-2206-15

 

 

 

DETERMINATION OF GLUCOSE CONTENTS IN KENAF

 

(Penentuan Kandungan Glukosa dalam Kenaf)

 

Fatin Afifah Ahmad Kuthi1, Nurulhuda Mohd Yunus1, Goh Kae Horng1, Khairiah Haji Badri1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

2Polymer Research Center, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: kaybadri@ukm.edu.my

 

 

Received: 27 July 2017; Accepted: 28 April 2018

 

 

Abstract

Kenaf is one of the potential plant fibres used in research on the extraction and recovery of glucose. Kenaf fiber is comprised of a kenaf core (KC) and kenaf bast (KB). This study was performed to explore a hot water pre-treatment (HWP) using boiling water immersion for 2 hours on both KC and KB. Alkaline treatment using 6% (w/v) sodium hydroxide (NaOH) aqueous solution was subsequently performed for 3 hours at room temperature. The percentages of a-cellulose and hemicellulose in both KC and KB were found to increase after HWP. On the contrary, the percentages of a-cellulose and hemicellulose decreased upon NaOH treatment. The percentage of Klason lignin was reduced when KC and KB had undergone the HWP and NaOH treatments. A Fourier transform infrared spectroscopy analysis (FTIR) revealed the removal of lignin from both parts of kenaf fibre after the NaOH treatment. This was confirmed when the peaks at 1735 cm-1 and    1246 cm-1 disappeared after the treatment. Glucose as part of carbohydrates was determined in the fibre and filtrate using phenol sulfuric (PS) and dinitrosalicylic acid (DNS) analyses respectively. PS analysis indicated that the amount of glucose in KC-HWP (0.17 mg/g) was higher than in untreated KC (0.13 mg/g) and KC-NaOH (0.09 mg/g). The untreated KB showed the highest glucose content (0.36 mg/g), followed by KB-HWP (0.29 mg/g) and KB-NaOH (0.18 mg/g). Meanwhile, DNS analysis disclosed that the glucose concentrations in the KC filtrate for both treatments were 0.05 mg/mL. In contrast, the DNS analysis for KB showed a slightly lower glucose concentration in the KB-HWP filtrate (0.062 mg/mL) compared to the KB-NaOH (0.064 mg/mL). The glucose production was highly related to the composition of a-cellulose in the kenaf fibers.

 

Keywords:  carbohydrate, kenaf fibre, compositional analysis, phenol sulfuric, dinitrosalicylic acid

 

Abstrak

Kenaf merupakam salah satu serabut tumbuhan yang berpotensi dalam penyelidikan yang melibatkan pengestrakan dan perolehan glukosa. Serabut kenaf terdiri daripada dua bahagian iaitu teras (KC) dan kulit (KB). Kajian ini meneroka pra-rawatan rendaman air mendidih (HWP) selama 2 jam bagi kedua-dua KC dan KB. Seterusnya, rawatan alkali menggunakan 6% (w/v) larutan akues natrium hidroksida (NaOH) dijalankan selama 3 jam pada suhu bilik. Peratus kandungan a-selulosa dan hemiselulosa bagi KC dan KB didapati meningkat selepas pra-rawatan air panas. Sebaliknya, peratusan  a-selulosa dan hemiselulosa menurun selepas rawatan NaOH. Peratus kandungan lignin Klason berkurang apabila KC dan KB menjalani rawatan HWP dan NaOH. Analisis spektroskopi inframerah transformasi Fourier (FTIR) menunjukkan bahawa berlaku penyingkiran lignin pada kedua-dua bahagian kenaf yang dirawat NaOH. Ia dapat dibuktikan apabila puncak pada nombor gelombang 1735 cm-1 dan 1246 cm-1 hilang selepas rawatan NaOH dijalankan. Glukosa yang merupakan sebahagian daripada karbohidrat ditentukan kandungannya di dalam serabut dan filtrat masing-masing menggunakan kaedah fenol sulfurik (PS) dan asid dinitrosalisilik (DNS). Berdasarkan analisis PS, kandungan glukosa dalam KC-HWP (0.17 mg/g) adalah lebih tinggi berbanding sampel KC tidak terawat (0.13 mg/g) dan KC-NaOH (0.09 mg/g). Berbeza dengan serabut KB di mana sampel KB tidak terawat menunjukkan kandungan glukosa yang tinggi iaitu 0.36 mg/g diikuti dengan KB-HWP (0.29 mg/g) dan KB-NaOH (0.18 mg/g). Analisis DNS menunjukkan kepekatan filtrat KC-HWP dan KC-NaOH adalah sama iaitu 0.05 mg/mL. Sebaliknya, analisis DNS bagi KB mempamerkan kepekatan glukosa yang sedikit rendah dalam filtrat KB-HWP (0.062 mg/mL) berbanding filtrat KB-NaOH (0.064 mg/mL). Perolehan glukosa sangat bergantung kepasa kandungan komposisi a-selulosa serabut kenaf.

 

Kata kunci:  serabut kenaf, analisis komposisi, karbohidrat, fenol sulfurik, asid dinitrosalisilik

 

References

1.       Ashori, A. (2006). Pulp and paper from kenaf bast fibers. Fibers and Polymers, 7(1): 26-29.

2.       Ohtani, Y., Mazumder. B. and Sameshima, K. (2001). Influence of the chemical composition of kenaf bast and core on the alkaline pulping response. Journal of Wood Science, 47(1): 30-35.

3.       Pande H. and Roy, D. N. (1996). Delignification kinetics of soda pulping of kenaf. Journal of Wood Chemistry and Technology, 16:311-325.

4.       Juhaida, M. F., Paridah, M. T., Mohd Hilmi, M., Sarani, Z., Mohamad Zaki, A. R., and Jalaluddin, A. 2009. Production of polyurethane from liquefied kenaf (Hisbiscuis cannabinus L.) core for wood laminating adhesive. Master Thesis, Universiti Putra Malaysia.

5.       Kaldor, A. F., Brasher, B. S. and Fuller, M. J. 1992. A strategy for the development of a kenaf-based pulp and paper industry. Tappi Journal, 75(1): 87-91.

6.       Li D. (1980). Theory and technology of fiber crops. Chinese: Shanghai: Scientific and Technological Press.

7.       Wolfgang, D. B., Talmadge, K. W., Keegstra, K. and Albresheim, P. (1973). The structure of plant cell walls. Plant Physiology, 51: 174-187.

8.       Kuthi, F. A. A., Norzali, N. R. A. A. and Badri, K. H. (2016). Thermal characteristics of microcrystalline cellulose from oil palm biomass. Malaysian Journal of Analytical Sciences, 20(5): 1112-1122.

9.       Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Masters Thesis, Louisiana State University.

10.    Kumar, P., Barrett, D. M., Delwiche, J. M. and Streove, P. (2009). Method for pretreatment of lignicellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry, 48(8), 3713-3729.

11.    Harmsen, P. F. H., Huijgen, W., Bermudez, L. and Bakker, R. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR Food & Biobased Research (No. 1184).

12.    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29: 675-685.

13.    She, D., Xu, F., Geng, Z. C., Sun, R. C., Jones, G. L. and Baird, M. S. (2010). Physicochemical characterization of extracted lignin from sweet sorghum stem. Industrial Crops and Products, 32:21-28.

14.    Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., Lee, Y. C. (2005). Carbohydrates analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 339: 69-72.

15.    Negrulescu, A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A. and Ostafe, V. (2012). Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. Journal of Brazilian Chemical Society, 23(12):2176-2182.

16.    Hu, R., Lin, L., Liu, T., Ouyong, P., He, B. and Liu, S. (2008). Reducing sugar content in hemicellulose hydrolysate by DNS method: A revisit. Journal of Biobased Materials and Bioenergy, 2: 156-161.

17.    Hasegawa, I., Kazuhide, T., Osamu, O. and Kazuhiro, M. (2004). New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy and Fuel, 18(3): 755-760.

18.    Sun, R. C., Fang, J. M. and Tomkinson. J. (2000). Delignication of rye straw using hydrogen peroxide. Industrial Crops and Product, 12: 71-83.

19.    Edeerozey, A. M. M., Akil, H. M., Azhar, A. B. and Ariffin, M. I. Z. (2007). Chemical modification of kenaf fibers. Materials Letters, 61(10): 2023-2025.

20.    Bachtiar, D., Mohd, S. S., Edisyam, Z., Khalina, A. and Khairul, Z. H. M. D. (2011). Effect of alkali treatment and a compatibilizing agent on tensile properties of sugar palm fibre-reinforced high impact polystyrene composites. Bioresource, 6(4); 4815-4823.

21.    Anon. (1984). Moisture in wood paper and paperboard. TAPPI Testing Procedure (TAPPI T207 om-81). USA.

22.    Anon. (1981). Water solubility of wood and pulp. TAPPI Testing Procedure (TAPPI T207 om-81). USA.

23.    Anon. (1997). Alcohol-benzene solubility of pulp. TAPPI Testing Procedure (TAPPI T204 om-97). USA.

24.    Anon. (1983). Alpha-, beta-, and gamma-cellulose of pulp. TAPPI Testing Procedure (TAPPI T203 om-83). USA.

25.    Anon. (1983). Klason lignin of pulp. TAPPI Testing Procedure (TAPPI T222 om-83). USA.

26.    Wise, L. D., Murphy, M. and D’addiego, A. (1946). Chlorite hollocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicellulose. Journal of Paper Trade, 112(2): 35-43.

27.    Ibrahim, S. M. (2012). Hidrolisis berenzim ke atas serabut tandan kosong sawit terawat gliserol akues bagi perolehan glukosa dan xilosa. Thesis of Master Degree, Universiti Kebangsaan Malaysia.

28.    Ling, T. P. (2013). Penghasilan gula yang boleh difermentasikan melalui dekonstruksi dan degradasi serat tandan kosong kelapa sawit. Thesis of Master Degree, Universiti Kebangsaan Malaysia.

29.    Farm, Y. Y., Duduku, K., Ranjin, M. and Bono, A. (2009). Cellulose extraction from palm karnel oil using liquid phase oxidation. Journal of Engineering and Technology 4(1): 57-68.

30.    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6): 673-686.

31.    Jonoobi, M., Jalaludin, H., Alireza, S., Manjusri., M. and Kristiina, O. (2009). Chemical composition, cystallinity, and thermal degration of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. Bioresource, 4(2) 626-639.

32.    Xue L., Tabil, L. G. and Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymer Environment, 15: 25-33.

33.    Ioelovich, M. and Morag, E. (2012). Study of enzymatic hydrolysis of mild pretreated lignocellulosic biomasses. Bioresource, 7(1): 1040-1052.

34.    Trivedi, N., Gupta, V., Reddy, C. R. K. and Jha, B. (2013). Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology, 150: 106-112.

35.    Pettersen, C. R. (1984). The chemical composition of wood. Advances in Chemistry, 207: 57-126.

36.    Nosbi, N., Akil, H. M., Ishak, Z. M. and Bakar, A. A. (2010). Degradation of compressive properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Materials and Design, 31(10): 4960-4964.

37.    Shakhes, J., Morteza. A. B. M., Farhad, Z., Ahmadreza, S. and Tayebe, S. (2011). Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. Bioresource Technology, 6(4): 4481-4493.

38.    Nosbi, N., Hazizan, M. A., Ishak, Z. A., and Abu, B. A. (2011). Behavior of kenaf after immerion in several water conditions. Bioresource, 6(2): 950-960.

39.    Pandey, K. K. (1998). A study of chemical structure of softwood and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71: 1969-1975.

40.    Schwanninger, M., Rodrigues, R. C., Pereira, H. and Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36: 23-40.

41.    Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H. and Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1):113-121.

42.    Kuthi, F. A. B. A. and Badri, K. H. (2014). Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose. AIP Conference Proceedings, 1614(1): 456-462.

43.    Kuthi, A. F. A., Haji Badri, K. and Mohmad Azman, A. (2015). X-ray diffraction patterns of oil palm empty fruit bunch fibers with varying crystallinity. Advanced Materials Research, 1087: 321-328.

44.    He, W., Li, Y., Si, H., Dong, Y., Sheng, F., Yao, X. and Hu, Z. (2006). Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 182(2): 158-167.

45.    Chang, J. L. and Thompson. J. E. (2010). Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmospheric Environment 44(4): 541-551.

46.    Ciolacu, D., Ciolacu F. and Popa, V. I. (2011). Amorphous cellulose- structure and characterization, Cellulose Chemistry Technology, 45: 13-21.

47.    Mahato, D. N., Mathur, B. K. and Bhattacherjee, S. (2013). DSC and IR methods for determination of accessibility of cellulosic coir fibre and thermal degradation under mercerization. Indian Journal of Fibre & Textile Research, 38: 96-100.

48.    Wenzl, H. F. J. (1970). The acid hydrolysis of wood. The Chemical Technology of Wood, Academic Press Inc., New York: pp. 157-252.

49.    Takahashi, N. and Koshijima, T. (1986). Molecular  properties of lignin-carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Science and Technology, 22: 177-189.

 




Previous                    Content                    Next