Malaysian Journal of Analytical Sciences Vol 22 No 6 (2018): 943 - 949

DOI: 10.17576/mjas-2018-2206-03

 

 

 

FORMATION OF VANILLIN AND VANILLIC ACID FROM KRAFT LIGNIN THROUGH GREEN CHEMICAL OXIDATION

 

(Pembentukan Vanillin dan Asid Vanillik dari Kraft Lignin melalui Proses Pengoksidaan Kimia Hijau)

 

Nabilah Ismail1* and Leonard James Wright2

 

1School of Fundamental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 2Centre for Green Chemical Sciences,

University of Auckland, 23 Symonds St, Private Bag 92019, Auckland, New Zealand

 

*Corresponding author: nabilah.i@umt.edu.my

 

 

Received: 16 September 2018; Accepted: 22 November 2018

 

 

Abstract

The development of efficient methods to produce useful small molecules such as vanillin and vanillic acid from kraft lignin is an important goal for a sustainable production of fine chemicals. It is generally known that oxidative treatments of kraft lignin can cause partial oxidative depolymerization to produce vanillin, but the conditions required are usually harsh and the yields are low. Therefore, the possibility of achieving the same reaction at 25 °C using an alternative green chemical catalytic oxidation process involving hydrogen peroxide and an Fe(TAML®) oxidation catalyst was investigated. Preliminary experiments using this method at 25 °C with kraft lignin resulted in the formation of small amounts of vanillin (ca. 5%) as well as vanillic acid (<1%). The influence of key parameters including the concentrations of the catalyst (2.0-4.0 µM) and H2O2 (0.5-2.0 mM) on the amount of these compounds formed were reported.

 

Keywords:  Fe(TAML®), hydrogen peroxide, kraft lignin, vanillin, vanillic acid

 

Abstrak

Pembangunan kaedah yang berkesan untuk menghasilkan molekul kecil yang berguna seperti vanillin dan asid vanillik dari kraft lignin adalah penting bagi penghasilan bahan kimia yang mampan. Adalah diketahui bahawa pengoksidaan kraft lignin mampu mengakibatkan depolimerisasi oksidatif separa untuk memberikan vanilin, tetapi kondisi yang diperlukan biasanya kasar dan hasilnya rendah. Oleh itu, kemungkinan untuk mencapai tindak balas yang sama pada 25 °C menggunakan proses pengoksidaan pemangkin kimia alternatif yang melibatkan hidrogen peroksida dan pemangkin pengoksidaan Fe (TAML®) disiasat. Eksperimen awal menggunakan kaedah ini pada 25 °C dengan kraft lignin mengakibatkan pembentukan sejumlah kecil vanillin (sekitar 5%) serta asid vanillik(<1%). Pengaruh parameter utama termasuk kepekatan pemangkin (2.0-4.0 µM) dan H2O2 (0.5-2.0 mM), keatas jumlah pembentukan sebatian ini dilaporkan.

 

Kata kunci:  Fe(TAML®), hidrogen peroksida, kraft lignin, vanillin, asid vanillik

 

References

1.       Mahmood, N., Yuan, Z., Schmidt, J. and Xu, C. C. (2016). Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renewable and Sustainable Energy Reviews60: 317-329.

2.       Lange, H., Decina, S. and Crestini, C. (2013). Oxidative upgrade of lignin–Recent routes reviewed. European Polymer Journal49(6): 1151-1173.

3.       Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews110(6): 3552-3599.

4.       Bjørsvik, H. R. and Liguori, L. (2002). Organic processes to pharmaceutical chemicals based on fine chemicals from lignosulfonates. Organic Process Research & Development6(3): 279-290.

5.       Pinto, P. C. R., Costa, C. E. and Rodrigues, A. E. (2013). Oxidation of lignin from Eucalyptus globulus pulping liquors to produce syringaldehyde and vanillin. Industrial & Engineering Chemistry Research52(12): 4421-4428.

6.       Voitl, T. and Rohr, P. R. V. (2009). Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Industrial & Engineering Chemistry Research49(2): 520-525.

7.       Napoly, F., Kardos, N., Jean-Gérard, L., Goux-Henry, C., Andrioletti, B. and Draye, M. (2015). H2O2-mediated kraft lignin oxidation with readily available metal salts: What about the effect of ultrasound?. Industrial & Engineering Chemistry Research54(22): 6046-6051.

8.       Voitl, T., Nagel, M. V. and von Rohr, P. R. (2010). Analysis of products from the oxidation of technical lignins by oxygen and H3PMo12O40 in water and aqueous methanol by size-exclusion chromatography.  Holzforschung64(1): 13-19.

9.       Ouyang, X., Ruan, T. and Qiu, X. (2016). Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Processing Technology144: 181-185.

10.    Wingate, K. G., Stuthridge, T. R., Wright, L. J., Horwitz, C. P. and Collins, T. J. (2004). Application of TAML® catalysts to remove colour from pulp and paper mill effluents. Water Science and Technology49(4): 255-260.

11.    Horwitz, C. P., Collins, T. J., Spatz, J., Smith, H. J., Wright, L. J., Stuthridge, T. R., Wingate, K. G & McGrouther, K. (2006). Iron-TAML® catalysts in the pulp and paper industry. ACS Symposium Series, 921: 156-169

12.    Collins, T. J., Horwitz, C. P., Ryabov, A. D., Vuocolo, L. D., Gupta, S. S., Ghosh, A., Fattaleh, N. L., Handgun, Y., Steinhoff, B., Noser, C. A. and Beach, E. (2002). Tetraamido macrocyclic ligand catalytic oxidant activators in the pulp and paper industry. Advancing Sustainability through Green Chemistry and Engineering, 823: 47-60.

13.    Collins, T. J., Hall, J. A., Vuocolo, L. D., Fattaleh, N. L., Suckling, I., Horwitz, C. P., Gordon-Wylie, S. W., Allison, R. W. Fullerton, T. J., Wright, L. J., (2000). The activation of hydrogen peroxide for selective, e. w. p. b.; In “Green Chemistry:  Challenging Perspectives P. T., ed., Oxford University Press, Oxford, pp. 79-105

14.    Bartos, M. J., Gordon-Wylie, S. W., Fox, B. G., Wright, L. J., Weintraub, S. T., Kauffmann, K. E., Münck, E., Kostka, K.L., Uffelman, E.S., Rickard, C.E. and Noon, K. R. (1998). Designing ligands to achieve robust oxidation catalysts. Iron based systems. Coordination Chemistry Reviews174(1): 361-390.

15.    Ryabov, A. D. and Collins, T. J. (2009). Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. Advances in Inorganic Chemistry61: 471-521.

16.    Delory, G. E. and King, E. J. (1945). A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochemical Journal39(3): 245.

17.    Chahbane, N., Popescu, D. L., Mitchell, D. A., Chanda, A., Lenoir, D., Ryabov, A. D., Schramm, K.W. and Collins, T. J. (2007). Fe III–TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: products, toxicity, kinetics, and mechanisms. Green Chemistry9(1): 49-57.

18.    Kingzett, C. T. (1888). On the estimation of peroxide of hydrogen. Analyst13: 62-63.

19.    Voisine, R., Carmichael, L., Chalier, P., Cormier, F. and Morin, A. (1995). Determination of glucovanillin and vanillin in cured vanilla pods. Journal of Agricultural and Food Chemistry43(10): 2658-2661.

20.    Tang, L. L., Gunderson, W. A., Weitz, A. C., Hendrich, M. P., Ryabov, A. D. and Collins, T. J. (2015). Activation of dioxygen by a TAML activator in reverse Micelles: characterization of an FeIIIFeIV dimer and associated catalytic chemistry. Journal of the American Chemical Society137(30): 9704-9715.

21.    Onundi, Y., Drake, B. A., Malecky, R. T., DeNardo, M. A., Mills, M. R., Kundu, S. and Truong, L. (2017). A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chemistry19(18): 4234-4262.

 




Previous                    Content                    Next