Malaysian
Journal of Analytical Sciences Vol 22 No 6 (2018): 943 - 949
DOI:
10.17576/mjas-2018-2206-03
FORMATION OF
VANILLIN AND VANILLIC ACID FROM KRAFT LIGNIN THROUGH GREEN CHEMICAL OXIDATION
(Pembentukan Vanillin dan Asid Vanillik dari Kraft Lignin
melalui Proses Pengoksidaan Kimia Hijau)
Nabilah Ismail1*
and Leonard James Wright2
1School of Fundamental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
2Centre for Green Chemical Sciences,
University
of Auckland, 23 Symonds St, Private Bag 92019, Auckland, New Zealand
*Corresponding
author: nabilah.i@umt.edu.my
Received: 16
September 2018; Accepted: 22 November 2018
Abstract
The development of efficient methods to
produce useful small molecules such as vanillin and vanillic acid from kraft
lignin is an important goal for a sustainable production of fine chemicals. It
is generally known that oxidative treatments of kraft lignin can cause partial
oxidative depolymerization to produce vanillin, but the conditions required are
usually harsh and the yields are low. Therefore, the possibility of achieving the
same reaction at 25 °C using an alternative green chemical catalytic oxidation
process involving hydrogen peroxide and an Fe(TAML®) oxidation
catalyst was investigated. Preliminary experiments using this method at 25 °C
with kraft lignin resulted in the formation of small amounts of vanillin (ca.
5%) as well as vanillic acid (<1%). The influence of key parameters
including the concentrations of the catalyst (2.0-4.0 µM) and H2O2
(0.5-2.0 mM) on the amount of these compounds formed were reported.
Keywords: Fe(TAML®), hydrogen peroxide, kraft
lignin, vanillin, vanillic acid
Abstrak
Pembangunan
kaedah yang berkesan untuk menghasilkan molekul kecil yang berguna seperti
vanillin dan asid vanillik dari kraft lignin adalah penting bagi penghasilan
bahan kimia yang mampan. Adalah diketahui bahawa pengoksidaan kraft lignin mampu
mengakibatkan depolimerisasi oksidatif separa untuk memberikan vanilin, tetapi
kondisi yang diperlukan biasanya kasar dan hasilnya rendah. Oleh itu,
kemungkinan untuk mencapai tindak balas yang sama pada 25 °C menggunakan proses
pengoksidaan pemangkin kimia alternatif yang melibatkan hidrogen peroksida dan
pemangkin pengoksidaan Fe (TAML®) disiasat. Eksperimen awal menggunakan kaedah
ini pada 25 °C dengan kraft lignin mengakibatkan pembentukan sejumlah kecil
vanillin (sekitar 5%) serta asid vanillik(<1%). Pengaruh parameter utama
termasuk kepekatan pemangkin (2.0-4.0 µM) dan H2O2
(0.5-2.0 mM), keatas jumlah pembentukan sebatian ini dilaporkan.
Kata kunci: Fe(TAML®), hidrogen peroksida, kraft lignin,
vanillin, asid vanillik
References
1.
Mahmood, N., Yuan, Z., Schmidt, J. and Xu, C.
C. (2016). Depolymerization of lignins and their applications for the
preparation of polyols and rigid polyurethane foams: A review. Renewable
and Sustainable Energy Reviews, 60:
317-329.
2.
Lange, H., Decina, S. and Crestini, C. (2013).
Oxidative upgrade of lignin–Recent routes reviewed. European Polymer
Journal, 49(6):
1151-1173.
3.
Zakzeski, J., Bruijnincx, P. C., Jongerius, A.
L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for
the production of renewable chemicals. Chemical Reviews, 110(6): 3552-3599.
4.
Bjørsvik, H. R. and Liguori, L. (2002). Organic
processes to pharmaceutical chemicals based on fine chemicals from
lignosulfonates. Organic Process Research & Development, 6(3): 279-290.
5.
Pinto, P. C. R., Costa, C. E. and Rodrigues, A.
E. (2013). Oxidation of lignin from Eucalyptus
globulus pulping liquors to produce syringaldehyde and vanillin. Industrial
& Engineering Chemistry Research, 52(12): 4421-4428.
6.
Voitl, T. and Rohr, P. R. V. (2009).
Demonstration of a process for the conversion of kraft lignin into vanillin and
methyl vanillate by acidic oxidation in aqueous methanol. Industrial &
Engineering Chemistry Research, 49(2):
520-525.
7.
Napoly, F., Kardos, N., Jean-Gérard, L., Goux-Henry,
C., Andrioletti, B. and Draye, M. (2015). H2O2-mediated
kraft lignin oxidation with readily available metal salts: What about the
effect of ultrasound?. Industrial & Engineering Chemistry Research, 54(22): 6046-6051.
8.
Voitl, T., Nagel, M. V. and von Rohr, P. R.
(2010). Analysis of products from the oxidation of technical lignins by oxygen
and H3PMo12O40 in water and aqueous methanol by size-exclusion
chromatography. Holzforschung, 64(1): 13-19.
9.
Ouyang, X., Ruan, T. and Qiu, X. (2016). Effect
of solvent on hydrothermal oxidation depolymerization of lignin for the
production of monophenolic compounds. Fuel Processing Technology, 144: 181-185.
10.
Wingate, K. G., Stuthridge, T. R., Wright, L.
J., Horwitz, C. P. and Collins, T. J. (2004). Application of TAML® catalysts to
remove colour from pulp and paper mill effluents. Water Science and
Technology, 49(4):
255-260.
11.
Horwitz, C. P., Collins, T. J., Spatz, J.,
Smith, H. J., Wright, L. J., Stuthridge, T. R., Wingate, K. G & McGrouther,
K. (2006). Iron-TAML® catalysts in the pulp and paper industry. ACS Symposium Series, 921: 156-169
12.
Collins, T. J., Horwitz, C. P., Ryabov, A. D.,
Vuocolo, L. D., Gupta, S. S., Ghosh, A., Fattaleh, N. L., Handgun, Y.,
Steinhoff, B., Noser, C. A. and Beach, E. (2002). Tetraamido macrocyclic ligand
catalytic oxidant activators in the pulp and paper industry. Advancing Sustainability through Green
Chemistry and Engineering, 823: 47-60.
13.
Collins,
T. J., Hall, J. A., Vuocolo, L. D., Fattaleh, N. L., Suckling, I., Horwitz, C. P., Gordon-Wylie, S. W.,
Allison, R. W. Fullerton, T. J., Wright, L. J., (2000). The activation
of hydrogen peroxide for selective, e. w. p. b.; In “Green Chemistry: Challenging Perspectives P. T., ed., Oxford
University Press, Oxford, pp. 79-105
14.
Bartos, M. J., Gordon-Wylie, S. W., Fox, B. G.,
Wright, L. J., Weintraub, S. T., Kauffmann, K. E., Münck, E., Kostka, K.L., Uffelman,
E.S., Rickard, C.E. and Noon, K. R. (1998). Designing ligands to achieve robust
oxidation catalysts. Iron based systems. Coordination Chemistry Reviews, 174(1): 361-390.
15.
Ryabov, A. D. and Collins, T. J. (2009).
Mechanistic considerations on the reactivity of green FeIII-TAML activators of
peroxides. Advances in Inorganic Chemistry, 61: 471-521.
16.
Delory, G. E. and King, E. J. (1945). A sodium
carbonate-bicarbonate buffer for alkaline phosphatases. Biochemical
Journal, 39(3): 245.
17.
Chahbane, N., Popescu, D. L., Mitchell, D. A.,
Chanda, A., Lenoir, D., Ryabov, A. D., Schramm, K.W. and Collins, T. J. (2007). Fe III–TAML-catalyzed
green oxidative degradation of the azo dye Orange II by H2O2 and
organic peroxides: products, toxicity, kinetics, and mechanisms. Green
Chemistry, 9(1):
49-57.
18.
Kingzett, C. T. (1888). On the estimation of
peroxide of hydrogen. Analyst, 13: 62-63.
19.
Voisine, R., Carmichael, L., Chalier, P.,
Cormier, F. and Morin, A. (1995). Determination of glucovanillin and vanillin
in cured vanilla pods. Journal of Agricultural and Food Chemistry, 43(10): 2658-2661.
20.
Tang, L. L., Gunderson, W. A., Weitz, A. C., Hendrich,
M. P., Ryabov, A. D. and Collins, T. J. (2015). Activation of dioxygen by a
TAML activator in reverse Micelles: characterization of an FeIIIFeIV
dimer and associated catalytic chemistry. Journal of the American
Chemical Society, 137(30):
9704-9715.
21.
Onundi, Y., Drake, B. A., Malecky, R. T.,
DeNardo, M. A., Mills, M. R., Kundu, S. and Truong, L. (2017). A
multidisciplinary investigation of the technical and environmental performances
of TAML/peroxide elimination of Bisphenol A compounds from water. Green
Chemistry, 19(18):
4234-4262.