Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 1 - 13

DOI: 10.17576/mjas-2019-2301-01

 

 

 

UNIQUE SIGNATURES OF HONEYS AS A MEANS TO ESTABLISH PROVENANCE

 

(Tanda Kenalan Unik Madu Sebagai Satu Cara Menentukan Provenans)

 

Syazwani Dzolin1, Wan Aini Wan Ibrahim1, 2*, Naji Arafat Mahat1, Aemi Syazwani Abdul Keyon1, Zuhaimy Ismail3

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

3Department of Mathematical Sciences, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

 

*Corresponding author:  waini@utm.my, wanaini@kimia.fs.utm.my

 

 

Received: 8 August 2018; Accepted: 12 December 2018

 

 

Abstract

Global consumer demands for high quality genuine honey are increasing continuously. The ability to identify the geographical and botanical origins of honey would be of great importance to the improvement of quality control, as well as protection of reputation and confidence of the honey industry. The establishment of unique signatures of honey is one of the potential approaches for honey provenance. A great deal of literature has been published on honey authenticity and provenance. However, specific study focusing on the provenance of honey, especially those of the stingless bee species is lacking, especially in Malaysia. Consequently, this mini review is to highlight the presence of biomarkers in honeys for establishing their provenance via the application of spectroscopy and chemometric techniques.

 

Keywords:  stingless bee, bee honey authenticity, provenance, spectroscopy, chemometric

 

Abstrak

Permintaan global pengguna terhadap madu tulen kualiti tinggi meningkat secara berterusan. Keupayaan untuk mengenal-pasti asal geografi dan botani madu akan menjadi amat penting kepada peningkatan kawalan kualiti, serta melindungi reputasi dan keyakinan industri madu. Kewujudan tanda kenalan unik madu adalah salah satu pendekatan yang berpotensi untuk asal madu. Banyak manuskrip telah diterbitkan untuk keaslian madu dan provenans. Walau bagaimanapun, kajian khusus yang memberi tumpuan kepada provenans madu, terutama bagi lebah tanpa sengat adalah sedikit terutamanya di Malaysia. Oleh itu, kajian tinjauan mini ini adalah untuk menyoroti kehadiran penanda bio dalam madu untuk menentukan provenansnya penggunaan teknik spektroskopi dan kemometrik.

 

Kata kunci:  lebah tanpa sengat, keaslian madu lebah, provenans, spektroskopi, kemometrik

 

References

1.       Vanhanen, A. Emmertz, L. P. and Savage, P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1): 236–240.

2.       Escuredo, O., Dobre, I., Fernández-González, M. and Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, (149): 84–90.

3.       Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B. and Sagdic, O. (2013). Quality characterization of artisanal and retail turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, (46):124–131.

4.       Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P. and Andrade, P. B. (2009). Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemistry Journal, (93): 73–77.

5.       Khalil, M. I., Motallib, M. A., Anisuzzaman, A., Sathi, Z. S., Hye, M. and Shahjahan, M. (2001). Biochemical analysis of different brands of unifloral honey available at the northern region of Bangladesh. Journal of Medical Science, (1): 385–388.

6.       Chakir, A., Romane, A., Barbagianni, N., Bartoli, D. and Ferrazzi, P. (2011). Major and trace elements in different types of Moroccan honeys. Australian Journal of Basic and Applied Sciences, 5(4):223–231.

7.       Bogdanov, S., Haldimann, M., Luginbuhl, W. and Gallmann, P. (2007). Minerals in Honey: Environmental, geographical and botanical aspects. Journal of Apicultural Research, (46): 269–275.

8.       de Ferrer, B. S. G., de Rodriguez, O., Pena, J., Martinez, J., and Moran, M. (2004). Mineral content of the honey produced in Zulia state, Venezuela. Archivos Latinoamericanos de Nutricion, 54(3): 346–348.

9.       Staniškien, B., Matusevičius, P. and Budreckien, R. (2006). Honey as an indicator of environmental pollution. Environmental Research, Engineering and Management, 2(36): 53–58.

10.    Mckee, B. (2003). Prevention of residues in honey: A future perspective. Apiacta, (38): 173–177.

11.    Rashed, M. N. and Soltan, M. E. (2004). Major and trace elements in in different types of Egyptian mono-floral and non-floral bee honeys. Journal of Food Composition and Analysis, (17): 725-735.

12.    Achudume, A. C. and Nwafor, B. N. (2010). The ecological assessment of metals in local brands of honey in Southwest Nigeria. African Journal of Agricultural Research, 5(18):2608-2610.

13.    Stankovska, E. Stafilov, T. and Šajn, R. (2008). Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry. Environmental Monitoring Assessment, (142): 117-126.

14.    Tuzen, M. Silici, S. Mendil, D. and Soylak, M. (2007). Trace element levels in honeys from different regions of Turkey. Food Chemistry, 103(2): 325-330.

15.    Floryszak-Wieczorek, F. Milczarek, G. Arasimowicz, M. and Ciszewski, A. (2006). Do nitric oxide donors mimic endogenous NO-related response in plants? Planta, (224): 1363-1372.

16.    Bratu, I. and Georgescu, C. (2005). Chemical contamination of bee honey–identifying sensor of the environment pollution. Journal of Central European Agriculture, (6):95–98.

17.    Yilmaz, H., and Yavuz, O. (1999). Content of some trace metals in honey from South-Eastern Anatolia. Food Chemistry, 4(65):475–476.

18.    Przybylowski, P. and Wilczyńska, A. (2001). Honey as an environmental marker. Food Chemistry. (74): 3289–3291.

19.    Buldini, P. L., Cavalli, S., Mevoli, A. and Sharma, J. L., (2001). Ion chromatographic and voltammetric determination of heavy and transition metals in honey. Food Chemistry, (73):487–495.

20.    Chua, L. S., Abdul-Rahaman, N. L., Sarmidi, M. R. and Aziz, R. (2012). Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chemistry, 135(3): 880–887.

21.    Devillers, J., Dore, J., Marenco, M., Poirier-Duchene, F., Galand, N. and Viel, C. (2002). Chemometrical analysis of 18 metallic and non-metallic elements found in honeys sold in France. Journal of Agricultural Food Chemistry, (50): 5998–6007.

22.    Chudzinska, M. and Barałkiewicz, D. (2011). Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food and Chemical Toxicology, 49: 2741–2749.

23.    Chudzinska, M., and Barałkiewicz, D. (2010). Estimation of honey authenticity by multi-element characteristics inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food and Chemical Toxicology. 48: 284–290.

24.    Latorre, M. J. Peña, R. Pita, C. Botana, A. García, S. and Herrero, C. (1999). Chemometric classification of honeys according to their type II. Metal content data. Food Chemistry, (66): 263268.

25.    González Paramás, A. M. Bárez, J. A. G. Garcia-Villanova, R. J. Palá, T. R. Albajar, R. A. and Sánchez, J. S. (2000). Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. Journal of the Science of Food and Agriculture, (80): 157165.

26.    Baroni, M. V. Arrua, C. Nores, M. L. Fayé, P. del Pilar Díaz, M. Chiabrando, G. A. and Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): Assessment of North/South provenance by chemometrics. Food Chemistry, (114): 727–723.

27.    Goodacre, R. Broadhurst, D. Smilde, A. Kristal, B. Baker, J. and Beger, R. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 3(3): 231–241.

28.    Donarski, J. A., Jones, S. A., and Charlton, A. J. (2008). Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey. Journal of Agricultural and Food Chemistry, 56(14): 5451–5456.

29.    Schievano, E., Finotello, C., Mammi, S., Belci, A. I., Colomban, S. and Navarini, L. (2015). Preliminary characterization of monofloral Coffea spp. honey: Correlation between potential biomarkers and pollen content. Journal of Agricultural and Food Chemistry, (63): 5858–5863.

30.    Donarski, J. A., Jones, S. A., Harrison, M., Driffield, M. and Charlton, A. J. (2010). Identification of botanical biomarkers found in corsican honey. Food Chemistry, 118(4):987–994.

31.    Consonni, R. and Cagliani, L. R. (2008). Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. Journal of Agricultural and Food Chemistry, 56(16): 6873–6880.

32.    Beretta, G., Caneva, E., Regazzoni, L., Bakhtyari, N. G. and Maffei F. R. (2008). A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey. Analytica Chimica Acta, 620(1–2): 176–182.

33.    Lolli, M. Bertelli, D. Plessi, M. Sabatini, A.G. and Restani, C. (2008). Classification of Italian honeys by 2D HR-NMR. Journal of Agricultural and Food Chemistry, 56(4): 1298–1304.

34.    Schievano, E., Peggion, E. and Mammi, S. (2010). 1H Nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. Journal of Agricultural and Food Chemistry, 58(1):57–65.

35.    Schievano, E., Stocchero, M., Morelato, E., Facchin, C. and Mammi, S. (2012). An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics, 8(4):679–690.

36.    Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. and Lachenmeier, D. W. (2013). Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. ISRN Analytical Chemistry, 2013: 1-9.

37.    Aliferis, K. A., Tarantilis, P. A., Harizanis, P. C. and Alissandrakis, E. (2010). Botanical discrimination and classification of honey samples applying gas chromatography/mass spectrometry fingerprinting of headspace volatile compounds. Food Chemistry, 121(3): 856–862.

38.    Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas, M. A. and Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4):1022–1030.

39.    Cajka, T., Hajslova, J., Pudil, F. and Riddellova, K. (2009). Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal of Chromatography A, 1216(9):1458–1462.

40.    Stanimirova, I., Üstünb, B., Cajka, T., Riddelova, K., Hajslova, J., and Buydens, L. M. C. (2010). Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chemistry, 118(1):171–176.

41.    Agila, A. and Barringer, S. (2012). Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral american honeys. Journal of Food Science, 77(10):1103–1108.

42.    Woodcock, T., Downey, G. and O'Donnell, C. P. (2009). Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey. Food Chemistry, 114(2): 742–746.

43.    Piernna, J. A. Abbas, O. Dardenne, P. and Baeten, V. (2011). Discrimination of corsican honey by FT-raman spectroscopy and chemometrics. Biotechnology, Agronomy, Society and Environment, 15(1): 75–84.

44.    Shadan, A. F. Mahat, N. A., Wan Ibrahim, W. A., Ariffin, Z. and Ismail, D. (2017). Provenance establishment of stingless bee honey using multi-element analysis in combination with chemometrics techniques. Journal of Forensic Sciences, 63(1): 8085.

45.    Azevedo, M. S., Seraglio, S. K. T., Rocha, G., Balders, C. B., Piovezan, M., Gonzaga, L. V., Falkenberg, D. B., Fett, R., and Costa, A. C. O. (2017). Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control, 78: 383392.

46.    Chudzinska, M. and Baralkiewicz, D. (2011). Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food and Chemical Toxicology, 49(11): 27412749.

 




Previous                    Content                    Next