Malaysian Journal of Analytical Sciences Vol 23 No 1
(2019): 1 - 13
DOI:
10.17576/mjas-2019-2301-01
UNIQUE SIGNATURES OF HONEYS AS A MEANS TO ESTABLISH PROVENANCE
(Tanda Kenalan Unik Madu Sebagai
Satu Cara Menentukan Provenans)
Syazwani Dzolin1,
Wan Aini Wan Ibrahim1, 2*, Naji Arafat Mahat1, Aemi Syazwani Abdul Keyon1, Zuhaimy Ismail3
1Department
of Chemistry, Faculty of Science
2Centre for Sustainable
Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research
3Department
of Mathematical Sciences, Faculty of
Science
Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia
*Corresponding
author: waini@utm.my,
wanaini@kimia.fs.utm.my
Received: 8
August 2018; Accepted: 12 December 2018
Abstract
Global consumer demands for high quality
genuine honey are increasing continuously. The ability to identify the
geographical and botanical origins of honey would be of great importance to the
improvement of quality control, as well as protection of reputation and
confidence of the honey industry. The establishment of unique signatures of honey is one of
the potential approaches for honey provenance. A great deal of literature has
been published on honey authenticity and provenance. However, specific study focusing
on the provenance of honey, especially those of the stingless bee species is
lacking, especially in
Malaysia. Consequently, this mini review
is to highlight the presence of biomarkers in honeys for establishing their
provenance via the application of
spectroscopy and chemometric techniques.
Keywords: stingless
bee, bee honey authenticity, provenance, spectroscopy, chemometric
Abstrak
Permintaan global pengguna terhadap madu tulen
kualiti tinggi meningkat secara berterusan. Keupayaan untuk mengenal-pasti asal
geografi dan botani madu akan menjadi amat penting kepada peningkatan kawalan
kualiti, serta melindungi reputasi dan keyakinan industri madu. Kewujudan tanda
kenalan unik madu adalah salah satu pendekatan yang berpotensi untuk asal madu.
Banyak manuskrip telah diterbitkan untuk keaslian madu dan provenans. Walau
bagaimanapun, kajian khusus yang memberi tumpuan kepada provenans madu,
terutama bagi lebah tanpa sengat adalah sedikit terutamanya di Malaysia. Oleh
itu, kajian tinjauan mini ini adalah untuk menyoroti kehadiran penanda bio
dalam madu untuk menentukan provenansnya penggunaan teknik spektroskopi dan
kemometrik.
Kata kunci: lebah tanpa sengat, keaslian madu lebah,
provenans, spektroskopi, kemometrik
References
1.
Vanhanen,
A. Emmertz, L. P. and Savage, P.
(2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1): 236–240.
2.
Escuredo, O., Dobre, I.,
Fernández-González, M. and Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization
phenomenon. Food
Chemistry, (149): 84–90.
3.
Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B. and Sagdic, O. (2013). Quality characterization of artisanal
and retail turkish blossom
honeys: Determination of physicochemical, microbiological,
bioactive properties and aroma profile. Industrial
Crops and Products, (46):124–131.
4.
Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P. and Andrade, P. B. (2009). Honey from Luso
region (Portugal): Physicochemical characteristics and mineral
contents. Microchemistry Journal, (93): 73–77.
5.
Khalil, M. I., Motallib, M. A., Anisuzzaman, A., Sathi, Z. S., Hye, M. and Shahjahan, M. (2001). Biochemical analysis of different brands of unifloral honey available at the
northern region of Bangladesh. Journal of
Medical Science, (1): 385–388.
6.
Chakir, A., Romane, A., Barbagianni, N., Bartoli, D. and Ferrazzi, P. (2011). Major and trace
elements in different types of Moroccan honeys.
Australian Journal of Basic and Applied
Sciences, 5(4):223–231.
7.
Bogdanov, S., Haldimann, M., Luginbuhl, W. and Gallmann, P. (2007). Minerals in Honey:
Environmental, geographical
and botanical aspects. Journal of Apicultural Research, (46): 269–275.
8.
de Ferrer, B. S. G., de Rodriguez, O., Pena, J., Martinez, J., and Moran, M. (2004). Mineral content
of the honey produced in Zulia
state, Venezuela. Archivos
Latinoamericanos de Nutricion, 54(3):
346–348.
9.
Staniškien, B., Matusevičius, P. and Budreckien, R. (2006). Honey as an indicator
of environmental pollution.
Environmental Research, Engineering and
Management, 2(36): 53–58.
10.
Mckee, B. (2003). Prevention of residues in honey: A future
perspective. Apiacta,
(38): 173–177.
11.
Rashed, M. N.
and Soltan, M. E. (2004). Major and trace elements in in different types of Egyptian
mono-floral and non-floral bee honeys. Journal of Food Composition and
Analysis, (17): 725-735.
12.
Achudume, A. C. and Nwafor, B. N. (2010). The ecological assessment of
metals in local brands of honey in Southwest Nigeria. African Journal of
Agricultural Research, 5(18):2608-2610.
13.
Stankovska, E.
Stafilov, T. and Šajn, R. (2008). Monitoring of trace elements in honey from
the Republic of Macedonia by atomic absorption spectrometry. Environmental
Monitoring Assessment, (142): 117-126.
14.
Tuzen,
M. Silici, S. Mendil, D. and Soylak, M. (2007).
Trace element levels in honeys from different regions of Turkey. Food
Chemistry, 103(2): 325-330.
15.
Floryszak-Wieczorek,
F. Milczarek, G. Arasimowicz, M. and Ciszewski, A. (2006). Do nitric oxide
donors mimic endogenous NO-related response in plants? Planta, (224):
1363-1372.
16.
Bratu,
I. and Georgescu, C. (2005). Chemical contamination of bee
honey–identifying sensor of the environment pollution. Journal of Central
European Agriculture, (6):95–98.
17.
Yilmaz, H., and Yavuz, O. (1999). Content of some
trace metals in honey from South-Eastern Anatolia. Food Chemistry, 4(65):475–476.
18.
Przybylowski, P. and Wilczyńska, A. (2001). Honey as an environmental
marker. Food
Chemistry. (74): 3289–3291.
19.
Buldini, P. L., Cavalli, S., Mevoli, A. and Sharma, J. L., (2001). Ion
chromatographic and voltammetric
determination of heavy
and transition metals in honey. Food
Chemistry, (73):487–495.
20.
Chua, L. S., Abdul-Rahaman,
N. L., Sarmidi, M. R. and Aziz, R. (2012). Multi-elemental
composition and physical
properties of honey
samples from Malaysia. Food Chemistry, 135(3):
880–887.
21.
Devillers, J., Dore, J., Marenco, M.,
Poirier-Duchene, F., Galand, N. and Viel, C. (2002). Chemometrical analysis of 18 metallic
and non-metallic elements found in honeys sold in France. Journal of Agricultural Food Chemistry, (50):
5998–6007.
22.
Chudzinska, M. and Barałkiewicz,
D. (2011). Application of ICP-MS method of determination of
15 elements in honey with chemometric approach for the verification of their
authenticity. Food
and Chemical Toxicology, 49: 2741–2749.
23.
Chudzinska, M., and Barałkiewicz,
D. (2010). Estimation of honey
authenticity by multi-element characteristics inductively coupled plasma-mass spectrometry (ICP-MS) combined
with chemometrics. Food
and Chemical Toxicology. 48: 284–290.
24.
Latorre, M. J.
Peña, R. Pita, C. Botana, A. García, S. and Herrero, C. (1999). Chemometric
classification of honeys according to their type II. Metal content data. Food
Chemistry, (66): 263–268.
25.
González Paramás, A. M. Bárez, J. A. G. Garcia-Villanova, R. J.
Palá, T. R. Albajar, R. A. and Sánchez, J. S. (2000). Geographical
discrimination of honeys by using mineral composition and common chemical
quality parameters. Journal of the Science of Food and Agriculture, (80):
157–165.
26.
Baroni,
M. V. Arrua, C. Nores, M. L. Fayé, P. del
Pilar Díaz, M. Chiabrando, G. A. and Wunderlin, D. A. (2009).
Composition of honey from Córdoba (Argentina): Assessment of North/South provenance
by chemometrics. Food Chemistry, (114): 727–723.
27.
Goodacre, R. Broadhurst, D. Smilde, A. Kristal, B. Baker, J. and Beger, R. (2007). Proposed minimum
reporting standards for data analysis in metabolomics. Metabolomics.
3(3): 231–241.
28.
Donarski, J. A., Jones, S. A., and Charlton, A. J. (2008). Application of cryoprobe 1H nuclear
magnetic resonance spectroscopy and multivariate
analysis for the verification
of corsican honey. Journal
of Agricultural and Food Chemistry, 56(14):
5451–5456.
29.
Schievano, E., Finotello, C., Mammi, S., Belci, A. I., Colomban, S. and Navarini, L. (2015). Preliminary characterization of monofloral
Coffea spp. honey: Correlation
between potential biomarkers and pollen content. Journal of Agricultural and Food Chemistry,
(63): 5858–5863.
30.
Donarski, J. A., Jones, S. A., Harrison, M., Driffield, M. and Charlton, A. J. (2010). Identification of botanical biomarkers found in corsican honey.
Food Chemistry, 118(4):987–994.
31.
Consonni, R. and Cagliani, L. R. (2008). Geographical characterization of polyfloral
and acacia honeys by nuclear magnetic resonance and chemometrics. Journal
of Agricultural and Food Chemistry, 56(16):
6873–6880.
32.
Beretta, G., Caneva, E., Regazzoni, L., Bakhtyari, N. G. and Maffei
F. R. (2008). A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical
origin of honey. Analytica Chimica Acta, 620(1–2): 176–182.
33.
Lolli, M. Bertelli, D. Plessi, M. Sabatini, A.G. and Restani, C. (2008). Classification of Italian honeys by 2D HR-NMR. Journal of Agricultural and Food Chemistry, 56(4): 1298–1304.
34.
Schievano, E., Peggion, E. and Mammi, S. (2010). 1H Nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its
botanical origin. Journal of Agricultural and Food Chemistry,
58(1):57–65.
35.
Schievano, E., Stocchero, M., Morelato, E., Facchin, C. and Mammi, S. (2012). An NMR-based
metabolomic approach to identify the botanical
origin of honey. Metabolomics, 8(4):679–690.
36.
Ohmenhaeuser, M., Monakhova, Y. B., Kuballa, T. and Lachenmeier, D. W. (2013). Qualitative and quantitative control
of honeys using NMR spectroscopy and chemometrics.
ISRN Analytical Chemistry, 2013: 1-9.
37.
Aliferis, K. A., Tarantilis,
P. A., Harizanis, P. C. and Alissandrakis, E. (2010). Botanical discrimination and classification
of honey samples applying gas chromatography/mass
spectrometry fingerprinting
of headspace volatile compounds. Food
Chemistry, 121(3): 856–862.
38.
Castro-Vázquez, L., Díaz-Maroto, M. C., González-Viñas,
M. A. and Pérez-Coello,
M. S. (2009). Differentiation
of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory
descriptive analysis. Food Chemistry, 112(4):1022–1030.
39.
Cajka, T., Hajslova, J., Pudil, F. and Riddellova, K. (2009). Traceability of honey origin based on volatiles pattern processing by artificial neural networks. Journal
of Chromatography A, 1216(9):1458–1462.
40.
Stanimirova, I., Üstünb, B., Cajka, T., Riddelova, K., Hajslova, J., and Buydens, L. M. C. (2010). Tracing the geographical
origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food
Chemistry, 118(1):171–176.
41.
Agila, A. and Barringer, S. (2012). Application of selected
ion flow tube mass spectrometry coupled
with chemometrics to study
the effect of location and botanical origin on volatile profile of unifloral american honeys.
Journal of Food Science, 77(10):1103–1108.
42.
Woodcock, T., Downey, G. and O'Donnell, C. P. (2009). Near infrared spectral fingerprinting for confirmation
of claimed PDO provenance of honey. Food
Chemistry, 114(2): 742–746.
43.
Piernna, J. A. Abbas, O. Dardenne, P. and Baeten, V. (2011). Discrimination of corsican honey by FT-raman spectroscopy and chemometrics.
Biotechnology, Agronomy, Society and Environment,
15(1): 75–84.
44.
Shadan, A. F.
Mahat, N. A., Wan Ibrahim, W. A., Ariffin, Z. and Ismail, D. (2017). Provenance
establishment of stingless bee honey using multi-element analysis in
combination with chemometrics techniques. Journal of Forensic Sciences, 63(1):
80–85.
45.
Azevedo, M. S.,
Seraglio, S. K. T., Rocha, G., Balders, C. B., Piovezan, M., Gonzaga, L. V.,
Falkenberg, D. B., Fett, R., and Costa, A. C. O. (2017). Free amino acid determination by GC-MS combined
with a chemometric approach for geographical classification
of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control, 78: 383–392.
46.
Chudzinska, M.
and Baralkiewicz, D. (2011). Application of ICP-MS method of determination of
15 elements in honey with chemometric approach for the verification of their
authenticity. Food and Chemical Toxicology, 49(11): 2741–2749.