Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 14 - 22
DOI:
10.17576/mjas-2019-2301-02
A NEW ULTRA VIOLET-VISIBLE SPECTROPHOTOMETRIC METHOD
FOR QUANTITATIVE DETERMINATION OF ACRYLAMIDE VIA HYDROLYSIS PROCESS
(Kaedah Spektrofotometrik Ultra Violet-Cahaya Nampak Baharu untuk Penentuan
Akrilamida Secara Kuantitatif Melalui Proses Hidrolisis)
Yee-May Chong1, Musa Ahmad2*, Lee Yook Heng1
1School of Chemical Sciences and Food Technology,
Faculty Sciences & Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Malaysia
2Industrial Chemical Technology Programme, Faculty
Sciences & Technology,
Universiti Sains Islam Malaysia, 71800 Nilai, Malaysia
*Corresponding author: andong@usim.edu.my
Received: 5
August 2018; Accepted: 8 December 2018
Abstract
This paper reported the results for quantitative determination of
acrylamide via hydrolysis process using ultra violet-visible (UV-Vis) spectrophotometric
method. This quantitative determination started with hydrolysing acrylamide in
a strong basic condition to yield ammonia and acid salt. The optimum conditions
of hydrolysis (concentration of the base used and time for hydrolysis) were also
determined. From this study, the optimum conditions to hydrolyse acrylamide
were achieved using 6.0 M of sodium hydroxide (NaOH) for 10 minutes. The
hydrolysis process was characterised by monitoring the ammonia produced using
Nessler’s reagent through the formation of yellow colouration in the presence
of ammonia. After the optimisation of hydrolysis process, the characterisation
of all parameters including concentration of Nessler’s reagent used,
reproducibility, dynamic range, and interference ions were studied. Linear
dynamic ranges from 0-10 ppm acrylamide with limit of detection (LOD) of 0.074
ppm were obtained when 3.0 mM Nessler’s reagent was used. The relative standard
deviations (RSD) for reproducibility were 2.8-3.3%. No significant interference
from cations such as Na+, K+, Ca2+ during
quantitative analysis of acrylamide, but ions such as Fe3+ and NH3
affected the analysis.
Keywords: acrylamide, hydrolysis, Nessler’s reagent
Abstrak
Kajian ini
melaporkan keputusan untuk penentuan kuantitatif akrilamida melalui proses
hidrolisis dengan kaedah spektofotometrik UV-Nampak (UV-Vis). Penentuan
kuantitatif ini dimulai dengan hidrolisis akrilamida dalam keadaan bes kuat dan
menghasilkan ammonia dan garam asid sebagai hasil. Keadaan optimum hidrolisis
seperti kepekatan bes yang digunakan serta masa hidrolisis optimum telah
ditentukan. Daripada kajian, keadaan hidrolisis akrilamida yang optimum ialah
menggunakan natrium hidroksida (NaOH) 6.0 M dan masa tindak balas selama 10
minit. Proses hidrolisis telah dicirikan dengan memantau ammonia yang terhasil
menggunakan reagen Nessler yang akan menghasilkan warna kuning dengan kehadiran
ammonia. Setelah mengoptimumkan proses hidrolisis, pencirian semua parameter
termasuk kepekatan reagen Nessler yang digunakan, kebolehulangan, julat
dinamik, dan ganguan ion telah dikaji. Julat dinamik linear daripada 0-10 ppm
akrilamida dengan had pengesanan (LOD) 0.074 ppm telah diperolehi apabila
reagen Nessler 3.0 mM digunakan. Sisihan piawai relatif (RSD) untuk kebolehulangan
telah diperolehi pada julat 2.8-3.3%. Kation seperti Na+, K+,
Ca2+ tidak memberikan gangguan yang ketara pada analisis kuantitatif
akrilamida, tetapi ion seperti Fe3+ and NH3 telah
mengganggu analisis ini.
Kata kunci: akrilamida, hidrolisis, reagen Nessler
References
1.
Tareke, E., Rydberg, P.,
Karlsson, P., Eriksson, S. and Törnqvist, M. (2002). Analysis of acrylamide, a
carcinogen formed in heated
foodstuffs. Journal
of Agricultural and Food Chemistry, 50: 4998-5006.
2.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart,
B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., Rizzi, G.
P. and Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods.
Journal of Agricultural and Food
Chemistry, 51: 4782-4787.
3.
Erickson, B. E. (2004). Finding acrylamide. Analytical Chemistry, 76: 247A-248A.
4.
Dybing, E., Farmer, P. B., Andersen, M., Fennell, T. R., Lalljie, S. P.
D., Müller, D. J. G., Olin, S., Petersen, B. J., Schlatter, J., Scholz, G.,
Scimeca, J. A., Slimani, N., Törnqvist, M., Tuijtelaars, S. and Verger, P.
(2005). Human exposure and internal dose assessments of acrylamide in food. Food and Chemical Toxicology, 43:
365-410.
5.
IARC (1994). International Agency for Research on Cancer, Lyon, France:
pp. 389-433.
6.
Preston, A., Fodey, T. and Elliott, C. (2008). Development of a
high-throughput enzyme-linked immunosorbent assay for the routine detection of
the carcinogen acrylamide in food, via rapid derivatisation pre-analysis. Analytica Chimica Acta, 608: 178-185.
7.
Zhou, S., Zhang, C., Wang, D. and Zhao, M. (2008). Antigen synthetic
strategy and immunoassay development for detection of acrylamide in foods. Analyst, 133: 903-909.
8.
Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., Fu, Y. and Li, Y. (2014).
Detection of acrylamide in potato chips using a fluorescent sensing method
based on acrylamide polymerization-induced distance increase between quantum
dots. Biosensors and Bioelectronics,
54: 64-71.
9.
Stobiecka, A., Radecka, H. and Radecki, J. (2007). Novel voltammetric
biosensor for determining acrylamide in food samples. Biosensors and Bioelectronics, 22: 2165-2170.
10.
Krajewska, A., Radecki, J. and Radecka, H. (2008). A voltammetric
biosensor based on glassy carbon electrodes modified with single-walled carbon
nanotubes/hemoglobin for detection of acrylamide in water extracts from potato
crisps. Sensors, 8: 5832-5844.
11.
Garabagiu, S. and Mihailescu, G. (2011). Simple hemoglobin–gold
nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of Electroanalytical Chemistry,
659: 196-200.
12.
Batra, B., Lata, S., Sharma, M. and Pundir, C. S. (2013). An acrylamide
biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper
nanoparticles/polyaniline hybrid film. Analytical
Biochemistry, 433: 210-217.
13.
Batra, B., Lata, S. and Pundir, C. S. (2013). Construction of an improved
amperometric acrylamide biosensor based on hemoglobin immobilized onto
carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan
composite film. Bioprocess and Biosystems
Engineering, 36: 1591-1599.
14.
Silva, N., Gil, D., Karmali, A. and Matos, M. (2009). Biosensor for
acrylamide based on an ion-selective electrode using whole cells of Pseudomonas aeruginosa containing
amidase activity. Biocatalysis and
Biotransformation, 27: 143-151.
15.
Silva, N. A. F., Matos, M. J., Karmali, A. and Racha, M. M. (2011). An
electrochemical biosensor for acrylamide detection: Merits and limitations. Portugaliae Electrochimica Acta, 29:
361-373.
16.
Ignatov, O. V., Rogatcheva, S. M., Vasil'eva, O. V. and Ignatov, V. V.
(1996). Selective determination of acrylonitrile, acrylamide and acrylic acid
in waste waters using microbial cells. Resources,
Conservation and Recycling, 18: 69-78.
17.
Ignatov, O. V., Rogatcheva, S. M., Kozulin, S. V. and Khorkina, N. A.
(1997). Acrylamide and acrylic acid determination using respiratory activity of
microbial cells. Biosensors and
Bioelectronics, 12: 105-111.
18.
Hasegawa, K., Miwa, S., Tajima, T., Tsutsumiuchi, K., Taniguchi, H. and
Miwa, J. (2007). A rapid and inexpensive method to screen for common foods that
reduce the action of acrylamide, a harmful substance in food. Toxicology Letters, 175: 82-88.
19.
Qiu, Y., Qu, X., Dong, J., Ai, S. and Han, R. (2011). Electrochemical
detection of DNA damage induced by acrylamide and its metabolite at the
graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. Journal of Hazardous Materials, 190:
480-485.
20.
Li, D., Xu, Y., Zhang, L. and Tong, H. (2014). A label-free
electrochemical bopsensor for acrylamide based on DNA immobilized on graphene
oxide-modified glassy carbon electrode. International
Journal of Electrochemical Science, 9: 7217-7227.
21.
Sun, X., Ji, J., Jiang, D., Li, X., Zhang, Y., Li, Z. and Wu, Y. (2013).
Development of a novel electrochemical sensor using pheochromocytoma cells and
its assessment of acrylamide cytotoxicity. Biosensors
and Bioelectronics, 44: 122-126.
22.
Paleologos, E. K. and Kontominas, M. G. (2005). Determination of
acrylamide and methacrylamide by normal phase high performance liquid
chromatography and UV detection. Journal
of Chromatography A, 1077: 128-135.
23.
Chong, Y.-M., Ahmad, M., Heng, L. Y., Kusnin, N. and Shukor, M. Y. A.
(2017). Acrylamide optical sensor based on hydrolysis using Bacillus sp. strain ZK34 containing
amidase properties. Sains Malaysiana,
46: 1557-1563.