Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 80 - 89

DOI: 10.17576/mjas-2019-2301-10

 

 

 

BIOHYDROGEN PURIFICATION FROM PALM OIL MILL EFFLUENT FERMENTATION FOR FUEL CELL APPLICATION

 

(Penulenan Gas Biohidrogen yang Terhasil dari Fermentasi Efluen Kilang Minyak Kelapa Sawit Untuk Aplikasi Sel Bahan Api)

 

Ying Tao Chung 1,2, Rosiah Rohani 1*, Izzati Nadia Mohamad 1, Mohd Shahbudin Mastar@Masdar 1,2, Mohd Sobri Takriff 1

 

1Chemical Engineering Program & Research Centre for Sustainable Process Technology,

Faculty of Engineering and Built Environment

2Fuel Cell Institute

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  rosiah@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Palm Oil Mill Effluent (POME) is one of the major pollutants generated from palm oil mills. In Malaysia, POME is recognised as a promising source for producing biogas through a controlled fermentation process, which can be used as a source of renewable energy. Therefore, this research was conducted to upgrade the biohydrogen produced from POME fermentation via (i) absorption and (ii) membrane techniques. In this study, the current and power capacity of the purified biohydrogen was verified by using fuel cell. From the results, POME fermentation was found to consist of mainly H2 and CO2 of equal amounts. Therefore, biohydrogen purification using the absorption technique was next performed using three different solvents: methyl ethanol amine (MEA), ammonia (NH3) and potassium hydroxide (KOH) solutions and compared with the membrane permeation method using polysulfone (PSF) membrane. The highest H2 purity for MEA solutions was found to be 99%, at 1 M concentration and 5.0 mL/s feed mixed gas flow rate at 60 minutes absorption time. The purified biohydrogen using PSF membrane possessed the highest H2 purity at nearly 77% at the pressure of 3 bar. The purified biohydrogen obtained from the two separation techniques were next tested in a proton exchange membrane (PEM) fuel cell and directly compared with the original biohydrogen mixture obtained from POME fermentation (50% H2), where the gas ratios were represented using simulated gas composition. The findings in this study identified that the current and power produced at 100% H2 (similar H2 purity from the absorption technique) was 1.66 A and 9.31 W while at 75% H2 (similar H2 purity from the membrane technique) the current was 0.69 A and 3.01 W. Therefore, the results prove that both purification techniques demonstrate the significant potential for H2 purification efficiency.

 

Keywords:  absorption, alkaline solvent, biohydrogen, carbon dioxide, palm oil mill effluent, treatment

 

Abstrak

Efluen kilang minyak kelapa sawit (POME) merupakan salah satu daripada pencemar utama yang dihasilkan daripada kilang minyak sawit. Terkini, ianya telah dikenalpasti sebagai salah satu sumber yang berpotensi untuk menghasilkan biogas di Malaysia melalui kaedah fermentasi di dalam bioreaktor dalam keadaan terkawal, yang boleh dijadikan sebagai sumber tenaga diperbaharui. Oleh itu, kajian ini dijalankan bagi menambahbaik biohidrogen yang dihasilkan dari fermentasi POME menerusi (i) teknik penyerapan dan (ii) teknik membran. Kapasiti arus dan kuasa yang terhasil menerusi penulenan biohidrogen kemudiannya telah ditentukan menggunakan sel bahan api. Daripada keputusan yang diperoleh, fermentasi POME mengandungi gas H2 dan CO2 sahaja, dengan jumlah yang sama. Oleh itu, penulenan biohidrogen menggunakan teknik penyerapan telah dilakukan menggunakan tiga jenis pelarut iaitu larutan metil etanol amina (MEA), ammonia (NH3) dan kalium hidroksida (KOH) dan kaedah ini kemudiannya dibandingkan dengan teknik pemisahan membran, iaitu dengan menggunakan membran polisulfon (PSF). Peratusan tertinggi bagi H2 yang telah ditulenkan menggunakan pelarut MEA adalah 99% pada kepekatan 1 M, kelajuan gas 5.0 mL/s dan masa penyerapan 60 minit. Sementara itu, penulenan biohidrogen menggunakan membran PSF mempunyai peratusan tertinggi penulenan H2 hampir 77% pada tekanan 3 bar. Biohidrogen yang telah ditulenkan melalui kedua-dua teknik pemisahan telah diuji dalam sel bahan api PEM dan ianya telah dibandingkan secara langsung dengan campuran biohidrogen asal dari fermentasi POME (50% H2), yang mana kesemua nisbah gas telah diwakili oleh komposisi gas tersimulasi. Arus dan kuasa yang telah dihasilkan pada 100% H2 (ketulenan H2 menyerupai peratusan dari teknik penyerapan) adalah 1.66 A dan 9.31 W manakala pada 75% H2 (ketulenan H2 menyerupai peratusan dari teknik membran) adalah 0.69 A dan 3.01 W. Keputusan ini telah membuktikan bahawa kedua-dua teknik penulenan biogas berpotensi tinggi bagi meninggikan kecekapan penulenan gas H2.

 

Kata kunci:  penyerapan, pelarut alkali, biohidrogen, karbon dioksida, efluen minyak kelapa sawit, rawatan

 

References

1.          Sayari, A., Belmabkhout, Y. and Serna-Guerrero, R. (2011). Flue gas treatment via CO2 adsorption. Chemical Engineering Journal, 171: 760–774.

2.          Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 380:  93–99.

3.          Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective. Renewable Sustainable Energy Revision, 26: 717–726.

4.          Badiei, M., Jahim, J. M., Anuar, N. and Sheikh Abdullah, S. R. (2011). Effect of hydraulic retention time on biohydrogen production from palm oil mill effluent in anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 36:  5912–5919.

5.          Kim, K., Ingole, P. G., Kim, J. and Lee, H. (2013). Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering Journal, 233: 242–250.

6.          Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J. , Diniz da Costa, J. C. and May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95: 123–154.

7.          Bakonyi, P., Nemestóthy, N. and Bélafi-Bakó, K. (2013). Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid-based gas separation membranes. International Journal of Hydrogen Energy, 38: 9673–9687.

8.          Diao, Y.-F., Zheng, X.-Y., He, B.-S., Chen, C.-H. and Xu, X.-C. (2004). Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion Management, 45: 2283–2296.

9.          Ma, S., Song, H., Wang, M., Yang, J. and Zang, B. (2013). Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution. Chemical Engineering Research Design. 91: 1327–1334.

10.        Kumbharkar, S. C., Liu, Y. and Li, K. (2011). High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 375: 231–240.

11.        Modigell, M., Schumacher, M., Teplyakov, V. V. and Zenkevich, V. B. (2008). A membrane contactor for efficient CO2 removal in biohydrogen production. Desalination, 224: 186–190.

12.        Mohamad, I. N., Rohani, R., Nor, M. T. M., Claassen, P., Muhammad, M. S., Masdar, M. S. and Rosli, M. I. (2017). An overview of gas-upgrading technologies for biohydrogen produced from treatment of palm oil mill effluent. Journal Engineering Science and Technology, 12: 725–755.

13.        Chong, P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A., Hassan, O. and Nor, M. T. M. (2013). Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy, 38:  9592–9599.

14.        Mohamad, I. N., Rohani, R., Masdar, M. S. M., Nor, M. M. T. and Jahim, J. (2015). Permeation properties of polymeric membranes for biohydrogen purification. International Journal of Hydrogen Energy. 41: 4474–4488.

15.        Maceiras, R., Alves, S. S., Cancela, M. Á. and Álvarez, E. (2008). Effect of bubble contamination on gas–liquid mass transfer coefficient on CO2 absorption in amine solutions. Chemical Engineering Journal. 137: 422–427.

16.        Zhao, B., Su, Y. and Peng, Y. (2013). Effect of reactor geometry on aqueous ammonia-based carbon dioxide capture in bubble column reactors. International Journal of Greenhouse Gas Control, 17: 481–487.

17.        Spigarelli, B. P. and Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utility, 1:  69–87.

18.        Choi, S., Lee, M., Oh, S. and Koo, J. (2003). Gas sorption and transport of ozone-treated polysulfone, Journal of Membrane Science, 221: 37–46.

19.        Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F. and Matsuura, T. (2014). State-of-the-art membrane-based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science. 39: 817–861.

20.        David, O. C., Gorri, D., Urtiaga, A. and Ortiz, I. (2011). Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. Journal of Membrane Science. 378: 359–368.

21.        Ebert, K., Fritsch, D., Koll, J. and Tjahjawiguna, C. (2004).  Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes, Journal of Membrane Science, 233: 71–78.

22.        Bakonyi, P., Nemestóthy, N., Lankó, J., Rivera, I., Buitrón, G. and Bélafi-Bakó, K. (2015). Simultaneous biohydrogen production and purification in a double-membrane bioreactor system, International Journal of Hydrogen Energy, 40: 1690–1697.

23.        Ahluwalia, R. K. and Wang, X. (2008). Effect of CO and CO2 impurities on performance of direct hydrogen polymer-electrolyte fuel cells, Journal of Power Sources. 180: 122–131.

24.        Chew, L. W., Masdar, M. S. and Kamarudin, S. K. (2015). Purification of bio-hydrogen using absorption techniques and the effect of CO2 impurity on the PEMFC performance. American Journal of Chemistry, 5: 24–34.

 




Previous                    Content                    Next