Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 80 - 89
DOI:
10.17576/mjas-2019-2301-10
BIOHYDROGEN
PURIFICATION FROM PALM OIL MILL EFFLUENT FERMENTATION FOR FUEL CELL APPLICATION
(Penulenan Gas
Biohidrogen yang Terhasil dari Fermentasi Efluen Kilang Minyak Kelapa Sawit
Untuk Aplikasi Sel Bahan Api)
Ying Tao Chung 1,2,
Rosiah Rohani 1*, Izzati Nadia Mohamad 1, Mohd Shahbudin
Mastar@Masdar 1,2, Mohd Sobri Takriff 1
1Chemical Engineering Program & Research Centre
for Sustainable Process Technology,
Faculty
of Engineering and Built Environment
2Fuel Cell Institute
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: rosiah@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Palm Oil Mill Effluent (POME) is one of
the major pollutants generated from palm oil mills. In Malaysia, POME is
recognised as a promising source for producing biogas through a controlled
fermentation process, which can be used as a source of renewable energy.
Therefore, this research was conducted to upgrade the biohydrogen produced from
POME fermentation via (i) absorption
and (ii) membrane techniques. In this study, the current and power capacity of
the purified biohydrogen was verified by using fuel cell. From the results,
POME fermentation was found to consist of mainly H2 and CO2
of equal amounts. Therefore, biohydrogen purification using the absorption
technique was next performed using three different solvents: methyl ethanol
amine (MEA), ammonia (NH3) and potassium hydroxide (KOH) solutions
and compared with the membrane permeation method using polysulfone (PSF)
membrane. The highest H2 purity for MEA solutions was found to be
99%, at 1 M concentration and 5.0 mL/s feed mixed gas flow rate at 60 minutes
absorption time. The purified biohydrogen using PSF membrane possessed the
highest H2 purity at nearly 77% at the pressure of 3 bar. The
purified biohydrogen obtained from the two separation techniques were next
tested in a proton exchange membrane (PEM) fuel cell and directly compared with
the original biohydrogen mixture obtained from POME fermentation (50% H2),
where the gas ratios were represented using simulated gas composition. The
findings in this study identified that the current and power produced at 100% H2
(similar H2 purity from the absorption technique) was 1.66 A and
9.31 W while at 75% H2 (similar H2 purity from the
membrane technique) the current was 0.69 A and 3.01 W. Therefore, the results
prove that both purification techniques demonstrate the significant potential
for H2 purification efficiency.
Keywords: absorption,
alkaline solvent, biohydrogen, carbon dioxide, palm oil mill effluent,
treatment
Abstrak
Efluen
kilang minyak kelapa sawit (POME) merupakan salah satu daripada pencemar utama
yang dihasilkan daripada kilang minyak sawit. Terkini, ianya telah dikenalpasti
sebagai salah satu sumber yang berpotensi untuk menghasilkan biogas di Malaysia
melalui kaedah fermentasi di dalam bioreaktor dalam keadaan terkawal, yang
boleh dijadikan sebagai sumber tenaga diperbaharui. Oleh itu, kajian ini
dijalankan bagi menambahbaik biohidrogen yang dihasilkan dari fermentasi POME
menerusi (i) teknik penyerapan dan (ii) teknik membran. Kapasiti arus dan kuasa
yang terhasil menerusi penulenan biohidrogen kemudiannya telah ditentukan
menggunakan sel bahan api. Daripada keputusan yang diperoleh, fermentasi POME
mengandungi gas H2 dan CO2 sahaja, dengan jumlah yang
sama. Oleh itu, penulenan biohidrogen menggunakan teknik penyerapan telah
dilakukan menggunakan tiga jenis pelarut iaitu larutan metil etanol amina
(MEA), ammonia (NH3) dan kalium hidroksida (KOH) dan kaedah ini
kemudiannya dibandingkan dengan teknik pemisahan membran, iaitu dengan
menggunakan membran polisulfon (PSF). Peratusan tertinggi bagi H2
yang telah ditulenkan menggunakan pelarut MEA adalah 99% pada kepekatan 1 M,
kelajuan gas 5.0 mL/s dan masa penyerapan 60 minit. Sementara itu, penulenan
biohidrogen menggunakan membran PSF mempunyai peratusan tertinggi penulenan H2
hampir 77% pada tekanan 3 bar. Biohidrogen yang telah ditulenkan melalui
kedua-dua teknik pemisahan telah diuji dalam sel bahan api PEM dan ianya telah
dibandingkan secara langsung dengan campuran biohidrogen asal dari fermentasi
POME (50% H2), yang mana kesemua nisbah gas telah diwakili oleh
komposisi gas tersimulasi. Arus dan kuasa yang telah dihasilkan pada 100% H2
(ketulenan H2 menyerupai peratusan dari teknik penyerapan) adalah
1.66 A dan 9.31 W manakala pada 75% H2 (ketulenan H2
menyerupai peratusan dari teknik membran) adalah 0.69 A dan 3.01 W. Keputusan
ini telah membuktikan bahawa kedua-dua teknik penulenan biogas berpotensi
tinggi bagi meninggikan kecekapan penulenan gas H2.
Kata kunci: penyerapan, pelarut alkali, biohidrogen, karbon dioksida,
efluen minyak kelapa sawit, rawatan
References
1.
Sayari,
A., Belmabkhout, Y. and Serna-Guerrero, R. (2011). Flue gas treatment via CO2
adsorption. Chemical Engineering Journal,
171: 760–774.
2.
Luis,
P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global
scenario: Consequences and alternatives. Desalination,
380: 93–99.
3.
Chin,
M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L. (2013). Biogas from
palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s
perspective. Renewable Sustainable Energy
Revision, 26: 717–726.
4.
Badiei,
M., Jahim, J. M., Anuar, N. and Sheikh Abdullah, S. R. (2011). Effect of
hydraulic retention time on biohydrogen production from palm oil mill effluent
in anaerobic sequencing batch reactor. International
Journal of Hydrogen Energy, 36:
5912–5919.
5.
Kim,
K., Ingole, P. G., Kim, J. and Lee, H. (2013). Separation performance of
PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2
mixed gas. Chemical Engineering Journal, 233:
242–250.
6.
Rufford,
T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J. , Diniz da Costa,
J. C. and May, E. F. (2012). The removal of CO2 and N2
from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and
Engineering, 94–95: 123–154.
7.
Bakonyi,
P., Nemestóthy, N. and Bélafi-Bakó, K. (2013). Biohydrogen purification by
membranes: An overview on the operational conditions affecting the performance
of non-porous, polymeric and ionic liquid-based gas separation membranes. International Journal of Hydrogen Energy, 38:
9673–9687.
8.
Diao,
Y.-F., Zheng, X.-Y., He, B.-S., Chen, C.-H. and Xu, X.-C. (2004). Experimental
study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion Management, 45:
2283–2296.
9.
Ma,
S., Song, H., Wang, M., Yang, J. and Zang, B. (2013). Research on mechanism of
ammonia escaping and control in the process of CO2 capture using
ammonia solution. Chemical Engineering
Research Design. 91: 1327–1334.
10.
Kumbharkar,
S. C., Liu, Y. and Li, K. (2011). High performance polybenzimidazole based
asymmetric hollow fibre membranes for H2/CO2 separation. Journal of Membrane Science, 375: 231–240.
11.
Modigell,
M., Schumacher, M., Teplyakov, V. V. and Zenkevich, V. B. (2008). A membrane
contactor for efficient CO2 removal in biohydrogen production. Desalination, 224: 186–190.
12.
Mohamad,
I. N., Rohani, R., Nor, M. T. M., Claassen, P., Muhammad, M. S., Masdar, M. S.
and Rosli, M. I. (2017). An overview of gas-upgrading technologies for
biohydrogen produced from treatment of palm oil mill effluent. Journal Engineering Science and Technology, 12:
725–755.
13.
Chong,
P. S., Jahim, J. M., Harun, S., Lim, S. S., Mutalib, S. A., Hassan, O. and Nor,
M. T. M. (2013). Enhancement of batch biohydrogen production from
prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy, 38: 9592–9599.
14.
Mohamad,
I. N., Rohani, R., Masdar, M. S. M., Nor, M. M. T. and Jahim, J. (2015).
Permeation properties of polymeric membranes for biohydrogen purification. International Journal of Hydrogen Energy.
41: 4474–4488.
15.
Maceiras,
R., Alves, S. S., Cancela, M. Á. and Álvarez, E. (2008). Effect of bubble
contamination on gas–liquid mass transfer coefficient on CO2
absorption in amine solutions. Chemical
Engineering Journal. 137: 422–427.
16.
Zhao,
B., Su, Y. and Peng, Y. (2013). Effect of reactor geometry on aqueous
ammonia-based carbon dioxide capture in bubble column reactors. International Journal of Greenhouse Gas
Control, 17: 481–487.
17.
Spigarelli,
B. P. and Kawatra, S. K. (2013). Opportunities and challenges in carbon dioxide
capture. Journal of CO2
Utility, 1: 69–87.
18.
Choi,
S., Lee, M., Oh, S. and Koo, J. (2003). Gas sorption and transport of
ozone-treated polysulfone, Journal of
Membrane Science, 221: 37–46.
19.
Rezakazemi,
M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F. and Matsuura, T.
(2014). State-of-the-art membrane-based CO2 separation using mixed
matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science. 39:
817–861.
20.
David,
O. C., Gorri, D., Urtiaga, A. and Ortiz, I. (2011). Mixed gas separation study
for the hydrogen recovery from H2/CO/N2/CO2
post combustion mixtures using a Matrimid membrane. Journal of Membrane Science. 378: 359–368.
21.
Ebert,
K., Fritsch, D., Koll, J. and Tjahjawiguna, C. (2004). Influence of inorganic fillers on the
compaction behaviour of porous polymer based membranes, Journal of Membrane Science, 233: 71–78.
22.
Bakonyi,
P., Nemestóthy, N., Lankó, J., Rivera, I., Buitrón, G. and Bélafi-Bakó, K.
(2015). Simultaneous biohydrogen production and purification in a
double-membrane bioreactor system, International
Journal of Hydrogen Energy, 40: 1690–1697.
23.
Ahluwalia,
R. K. and Wang, X. (2008). Effect of CO and CO2 impurities on
performance of direct hydrogen polymer-electrolyte fuel cells, Journal of Power Sources. 180: 122–131.
24.
Chew,
L. W., Masdar, M. S. and Kamarudin, S. K. (2015). Purification of bio-hydrogen
using absorption techniques and the effect of CO2 impurity on the
PEMFC performance. American Journal of
Chemistry, 5: 24–34.