Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 90 - 99

DOI: 10.17576/mjas-2019-2301-11

 

 

 

FACILE TECHNIQUE FOR THE IMMOBILISATION OF TIO2 NANOPARTICLES ON GLASS SUBSTRATES FOR APPLICATIONS IN THE PHOTOCATALYTIC SELF-CLEANING OF INDOOR AIR POLLUTANTS

 

(Salutan nanopartikel TiO2 ke atas Substrat Kaca Melalui Teknik Mudah untuk Penyingkiran Bahan Pencemar Udara dalaman Melalui Proses Fotokatalisis)

 

Kah Hon Leong1*, Jia Quan Lee2, A. Ashok Kumar3, Lan Ching Sim1, Saravanan Pichiah4

 

1Department of Environmental Engineering, Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

2Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering,

University of Malaya, 50603 Kuala Lumpur, Malaysia

3Department of Chemical Engineering, School of Engineering and Technology,

Periyar Maniammai University, Thanjavur - 613 403, India

4Department of Environmental Science and Engineering,

Indian Institute of Technology (ISM) Dhanbad- 826004, Jharkhand, India

 

*Corresponding author:  khleong@utar.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Self-cleaning technology employing titania (TiO2) photocatalysts has major applications in the removal of indoor air pollutants. Pollutant removal efficiency significantly depends on the properties of the photocatalyst thin film, which is deposited on substrates. The present work developed a facile immobilisation technique that is based on simple sol–gel process. In this technique, TiO2 nanoparticles are spray-coated onto a porous glass substrate. The uniformity of the TiO2 coating on the glass surface was studied using a dynamic flowsense charge-coupled device camera. The influence of different TiO2 nanoparticle concentrations in the ethanol phase was identified through rheological analysis, which showed that nanoparticle concentration is a crucial factor that affects the uniformity of the coating layer. The ability of the obtained material to catalyse formaldehyde photodegradation in presence of artificial UV light was investigated. Results demonstrated that >15.0 g/L TiO2 is required to activate formaldehyde photodegradation and that uniform surface coatings with sufficient surface thickness can be obtained by spraying TiO2 nanoparticles on glass substrates at concentrations of more than 15.0 g/L. This study demonstrated that uniformly coated photocatalysts for the efficient self-cleaning of indoor air pollutants can be fabricated through a facile technique.

 

Keywords:  self-cleaning, TiO2, sol-gel, formaldehyde, photocatalysis

 

Abstrak

Teknologi pembersihan menggunakan TiO2 sebagai fotokatalis yang memainkan peranan penting terutamanya dalam menyingkirkan bahan pencemar udara dalaman. Pembersihan bahan pencemar ini sangat bergantung kepada ketebalan filem salutan terbentuk pada substrat. Dalam kajian ini teknik mudah dapat dicapai melalui proses sol-gel dan diikuti dengan salutan semburan TiO2 berliang nanopartikel ke atas substrat kaca. Keseragaman pembentukan titania bersalut pada permukaan kaca dikaji menggunakan kamera “gabungan cas dinamik flowsense. Pengaruh kepekatan nanopartikle TiO2 yang berbeza-beza dalam fasa etanol membawa kepada analisis reologi. Kajian reologi menunjukkan keberkesanan kepekatan nanopartikel bagi mendapatkan lapisan salutan yang seragam. Keberkesanan salutan dinilai dengan penyingkiran formaldehid dalam kehadiran cahaya UV tiruan. Keputusan penyingkiran menunjukkan bahawa kepekatan TiO2 yang tinggi dengan melebihi 15.0 g/L menunjukkan penyingkiran formaldehid pada tahap yang ketara disebabkan oleh keseragaman salutan pada permukaan kaca serta ketebalan permukaan yang mencukupi. Kajian ini menunjukkan prestasi yang baik dalam mengesahkan salutan fotokatalis yang seragam untuk meningkat keberkesanan penyingkiran bahan pencemar udara dalaman.

 

Kata kunci:  penyingkiran, TiO2, sol-gel, formaldehid, fotokatalisis

 

References

1.       George, C., Beeldens, A., Barmpas, F., Doussin, J-F., Manganelli, G., Herrmann, H., Kleffmann, J. and Mellouki, A. (2016). Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 10(5): 2-11.

2.       Chi, C., Chen, W., Guo, M., Weng, M., Yan, G. and Shen X. (2016). Law and features of TVOC and formaldehyde pollution in urban indoor air. Atmospheric Environment, 132: 85-90.

3.       Romeas, V., Pichat, P., Guillard, C., Chopin, T. and Lehaut. C. (1999). Testing the efficacy and the potential effect on indoor air quality of a transparent self-cleaning TiO2-coated glass through the degradation of a fluoranthene layer. Industrial and Engineering Chemistry Research, 38: 3878-3885.

4.       Ganesh, V. A., Nair, A. S., Raut, H. K., Walsh, T. M. and Ramakrishna, S. (2012). Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2: 2067-2072.

5.       Nishimoto, S., Kubo, A., Zhang, X., Liu, Z., Taneichi, N., Okui, T., Murakami, T., Komine, T. and Fujishima, A. (2008). Novel hydrophobic/hydrophilic patterning process by photocatalytic Ag nucleation on TiO2 thin film and electroless Cu deposition. Applied Surface Science, 254: 5891-5894.

6.       Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H. and Murakami, T.  (2009). TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Applied Surface Science, 255: 6221-6225.

7.       Nakata, K., Udagawa, K., Ochiai, T., Sakai, H., Murakami, T., Abe, M. and Fujishima, A. (2011). Rapid erasing of wettability patterns based on TiO2-PDMS composite films. Materials Chemistry Physics, 126: 484-487.

8.       Fujishima, A., Rao, T. N. and Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1: 1-21.

9.       Guo, Z., Liu, W. and Su, B.-L. (2011). Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, 353: 335-355.  

10.    Wang, X., Ding, B., Yu, J. and Wang, M. (2011). Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today, 6: 510-530.

11.    Yu, J., Zhao, X., Yu, J. C., Zhong, G., Han, J. and Zhao, Q. (2001). The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films. Journal of Materials Science Letters, 20: 1745-1748.

12.    Leong, K. H., Monash, P., Ibrahim, S. and Saravanan, P. (2014). Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Solar Energy, 101: 321-332.

13.    Powell, M. J., Quesada-Cabrera, R., Taylor, A., Teixeira, D., Papakonstantinou, I. G., Palgrave, R., Sankar, G. and Parkin. I. (2016).  Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chemistry of Materials, 28(5): 1369-1376.

14.    Choi, Y., Kim, H-I., Moon, G-H., Jo, S. and Choi, W. (2016). Boosting up the low catalytic activity of silver for H2 production on Ag/TiO2 photocatalyst: Thiocyanate as a selective modifier. ACS Catalysis, 6(2): 821-828.

15.    Leong, K. H., Gan, B. L., Ibrahim, S. and Saravanan, P. (2014). Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Applied Surface Science, 319: 128-135.

16.    Han, D., Li, Y. and Jia, W. (2010). Preparation and characterization of molecularly imprinted SiO2-TiO2 and photo-catalysis for 2, 4-dichlorophenol. Advanced Materials Letters, 1: 188-192.

17.    Weon, S. and Choi, W. (2016). TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds. Environmental Science & Technology, 50(5): 2556-2563.

18.    Singh, P., Vishnu, M. C., Sharma, K. K., Singh, R., Madhav, S., Tiwary, D. and Mishra, P. K. (2016). Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and photosonocatalytic reactor. Journal of Desalination and Water Treatment, 57(43): 20552-20564.

19.    Sampaio, M., Silva, C. G., Silva, A. M. T. and Faria, J. L. (2016). Kinetic modelling for the photocatalytic degradation of phenol by using TiO2-coated glass Raschig rings under simulated solar light. Journal of Chemical Technology and Biotechnology, 91(2): 346-352.    

20.    Paz, Y. and Heller, A. (1997). Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. Journal of Materials Research, 12: 2759-2766.

21.    Negishi, N., Matsuzawa, S., Takeuchi, K. and Pichat, P. (2007). Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination:  characteristics and photocatalytic activities for removing acetaldehyde or toluene in air. Chemistry of Materials, 19: 3808-3814.

22.    Thiruvenkatachari, R., Vigneswaran, S. and Moon, I. S. (2008). A review on UV/TiO2 photocatalytic oxidation process. Korean Journal of Chemical Engineering, 25: 64-72.

23.    Fan, S.-Q., Yang, G.-J., Li, C., Liu, G., Li, C. and Zhang, L.-Z. (2006). Characterization of microstructure of nano-TiO2 coating deposited by vacuum cold spraying. Journal of Thermal Spray Technology, 15: 513-517.

24.    Yu, J. and Zhao, X. (2001). Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films. Materials Research Bulletin, 36: 97-107.

25.    O'Regan, B., Moser, J., Anderson, M. and Graetzel, M. (1990). Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. Journal of Physical Chemistry, 94: 8720-8726.

26.    Takeda, S., Suzuki, S., Odaka, H. and Hosono, H. (2001). Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Film, 392: 338-344.

27.    Yang, G.-J., Li, C.-J., Han, F. and Ohmori, A. (2004). Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings. Thin Solid Films, 466: 81-85.

28.    Seo, K.-L., Hyun, Y. and Lee, C.-S. (2014). Ultrasonochemical coating and characterization of TiO2-coated zirconia fine particles. Journal of Industrial and Engineering, 20: 1819-1824.

29.    Park, J. H., Kim, W.S., Jo, D.-H., Kim, J. S. and Park, J. M. (2014). Effect of Ce conversion underlayer coating on the photo-catalytic activity of TiO2 sol–gel film deposited on hot-dip GI. Journal of Industrial and Engineering, 20: 1965-1972.

30.    Zhang, X., Cooke, K., Carmichael, P. and Parkin, I. (2013). The deposition of crystallized TiO2 coatings by closed field unbalanced magnetron sputter ion plating. Surface Coatings Technology, 236: 290-295.

31.    Santillán, M. J., Membrives, F., Quaranta, N. and Boccaccini, A. R. (2008). Characterization of TiO2 nanoparticle suspensions for electrophoretic deposition. Journal of Nanoparticle Research, 10: 787-793.

32.    Barreto, P. L. M., Roeder, J., Crespo, J. S., Maciel, G. R., Terenzi, H., Pires, A. T. N. and Soldi, V. (2003). Effect of concentration, temperature and plasticizer content on rheological properties of sodium caseinate and sodium caseinate/sorbitol solutions and glass transition of their films. Food Chemistry, 82: 425-431.

33.    Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z. and Li, C. (2010). Photocatalytic oxidation of gaseous formaldehyde on TiO2: An in situ DRIFTS study. Catalysis Letters, 137: 239-246.

34.    Ichiura, H., Kitaoka, T. and Tanaka, H. (2003). Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique. Chemosphere, 50: 79-83.

35.    Yu, H., Zhang, K. and Rossi, C. (2007). Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst. Indoor and Built Environment, 16: 529-537.

36.    Liang, W., Li, J. and Jin, Y. (2012). Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Building and Environment, 51: 345-350.

 




Previous                    Content                    Next