Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 90 - 99
DOI:
10.17576/mjas-2019-2301-11
FACILE TECHNIQUE FOR THE IMMOBILISATION OF TIO2
NANOPARTICLES ON GLASS SUBSTRATES FOR APPLICATIONS IN THE PHOTOCATALYTIC SELF-CLEANING OF INDOOR AIR
POLLUTANTS
(Salutan nanopartikel TiO2 ke atas Substrat
Kaca Melalui Teknik Mudah untuk Penyingkiran Bahan Pencemar Udara dalaman
Melalui Proses Fotokatalisis)
Kah Hon Leong1*,
Jia Quan Lee2, A. Ashok Kumar3, Lan Ching Sim1,
Saravanan Pichiah4
1Department
of Environmental Engineering, Faculty of Engineering and Green Technology,
Universiti Tunku Abdul Rahman, Jalan Universiti,
Bandar Barat, 31900 Kampar, Perak, Malaysia
2Environmental
Engineering Laboratory, Department of Civil Engineering, Faculty of
Engineering,
University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Chemical Engineering, School of
Engineering and Technology,
Periyar
Maniammai University, Thanjavur - 613 403, India
4Department of Environmental Science and Engineering,
Indian Institute
of Technology (ISM) Dhanbad- 826004, Jharkhand, India
*Corresponding
author: khleong@utar.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Self-cleaning
technology employing titania (TiO2) photocatalysts has major
applications in the removal of indoor air pollutants. Pollutant removal
efficiency significantly depends on the properties of the photocatalyst thin
film, which is deposited on substrates. The present work developed a facile
immobilisation technique that is based on simple sol–gel process. In this
technique, TiO2 nanoparticles are spray-coated onto a porous glass
substrate. The uniformity of the TiO2 coating on the glass surface
was studied using a dynamic flowsense charge-coupled device camera. The
influence of different TiO2 nanoparticle concentrations in the
ethanol phase was identified through rheological analysis, which showed that
nanoparticle concentration is a crucial factor that affects the uniformity of
the coating layer. The ability of the obtained material to catalyse
formaldehyde photodegradation in presence of artificial UV light was
investigated. Results demonstrated that >15.0 g/L TiO2 is
required to activate formaldehyde photodegradation and that uniform surface
coatings with sufficient surface thickness can be obtained by spraying TiO2
nanoparticles on glass substrates at concentrations of more than 15.0
g/L. This study demonstrated that uniformly coated photocatalysts for the
efficient self-cleaning of indoor air pollutants can be fabricated through a
facile technique.
Keywords: self-cleaning, TiO2, sol-gel,
formaldehyde, photocatalysis
Abstrak
Teknologi pembersihan
menggunakan TiO2 sebagai fotokatalis yang memainkan peranan penting
terutamanya dalam menyingkirkan bahan pencemar udara dalaman. Pembersihan bahan
pencemar ini sangat bergantung kepada ketebalan filem salutan terbentuk pada
substrat. Dalam kajian ini teknik mudah dapat dicapai melalui proses sol-gel
dan diikuti dengan salutan semburan TiO2 berliang nanopartikel ke
atas substrat kaca. Keseragaman pembentukan titania bersalut pada permukaan
kaca dikaji menggunakan kamera “gabungan cas dinamik flowsense. Pengaruh
kepekatan nanopartikle TiO2 yang berbeza-beza dalam fasa etanol
membawa kepada analisis reologi. Kajian reologi menunjukkan keberkesanan
kepekatan nanopartikel bagi mendapatkan lapisan salutan yang seragam.
Keberkesanan salutan dinilai dengan penyingkiran formaldehid dalam kehadiran
cahaya UV tiruan. Keputusan penyingkiran menunjukkan bahawa kepekatan TiO2
yang tinggi dengan melebihi 15.0 g/L menunjukkan penyingkiran formaldehid pada
tahap yang ketara disebabkan oleh keseragaman salutan pada permukaan kaca serta
ketebalan permukaan yang mencukupi. Kajian ini menunjukkan prestasi yang baik
dalam mengesahkan salutan fotokatalis yang seragam untuk meningkat keberkesanan
penyingkiran bahan pencemar udara dalaman.
Kata kunci: penyingkiran, TiO2, sol-gel, formaldehid,
fotokatalisis
References
1.
George,
C., Beeldens, A., Barmpas, F., Doussin, J-F., Manganelli, G., Herrmann, H.,
Kleffmann, J. and Mellouki, A. (2016). Impact of photocatalytic remediation of
pollutants on urban air quality. Frontiers
of Environmental Science & Engineering, 10(5): 2-11.
2.
Chi,
C., Chen, W., Guo, M., Weng, M., Yan, G. and Shen X. (2016). Law and features
of TVOC and formaldehyde pollution in urban indoor air. Atmospheric Environment, 132: 85-90.
3.
Romeas,
V., Pichat, P., Guillard, C., Chopin, T. and Lehaut. C. (1999). Testing the
efficacy and the potential effect on indoor air quality of a transparent
self-cleaning TiO2-coated glass through the degradation of a
fluoranthene layer. Industrial and
Engineering Chemistry Research, 38: 3878-3885.
4.
Ganesh,
V. A., Nair, A. S., Raut, H. K., Walsh, T. M. and Ramakrishna, S. (2012).
Photocatalytic superhydrophilic TiO2 coating on glass by
electrospinning. RSC Advances, 2:
2067-2072.
5.
Nishimoto,
S., Kubo, A., Zhang, X., Liu, Z., Taneichi, N., Okui, T., Murakami, T., Komine,
T. and Fujishima, A. (2008). Novel hydrophobic/hydrophilic patterning process
by photocatalytic Ag nucleation on TiO2 thin film and electroless Cu
deposition. Applied Surface Science,
254: 5891-5894.
6.
Nishimoto,
S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata,
K., Sakai, H. and Murakami, T. (2009).
TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication
via an ink-jet technique and application in offset printing. Applied Surface Science, 255: 6221-6225.
7.
Nakata,
K., Udagawa, K., Ochiai, T., Sakai, H., Murakami, T., Abe, M. and Fujishima, A.
(2011). Rapid erasing of wettability patterns based on TiO2-PDMS
composite films. Materials Chemistry
Physics, 126: 484-487.
8.
Fujishima,
A., Rao, T. N. and Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology
C: Photochemistry Reviews, 1: 1-21.
9.
Guo,
Z., Liu, W. and Su, B.-L. (2011). Superhydrophobic surfaces: From natural to
biomimetic to functional. Journal of
Colloid and Interface Science, 353: 335-355.
10.
Wang,
X., Ding, B., Yu, J. and Wang, M. (2011). Engineering biomimetic
superhydrophobic surfaces of electrospun nanomaterials. Nano Today, 6: 510-530.
11.
Yu,
J., Zhao, X., Yu, J. C., Zhong, G., Han, J. and Zhao, Q. (2001). The grain size
and surface hydroxyl content of super-hydrophilic TiO2/SiO2
composite nanometer thin films. Journal
of Materials Science Letters, 20: 1745-1748.
12.
Leong,
K. H., Monash, P., Ibrahim, S. and Saravanan, P. (2014). Solar photocatalytic
activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic
sol–gel method. Solar Energy, 101:
321-332.
13.
Powell,
M. J., Quesada-Cabrera, R., Taylor, A., Teixeira, D., Papakonstantinou, I. G., Palgrave,
R., Sankar, G. and Parkin. I. (2016).
Intelligent multifunctional VO2/SiO2/TiO2
coatings for self-cleaning, energy-saving window panels. Chemistry of Materials, 28(5): 1369-1376.
14.
Choi,
Y., Kim, H-I., Moon, G-H., Jo, S. and Choi, W. (2016). Boosting up the low
catalytic activity of silver for H2 production on Ag/TiO2
photocatalyst: Thiocyanate as a selective modifier. ACS Catalysis, 6(2): 821-828.
15.
Leong,
K. H., Gan, B. L., Ibrahim, S. and Saravanan, P. (2014). Synthesis of surface
plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for
degradation of endocrine disturbing compounds. Applied Surface Science, 319: 128-135.
16.
Han,
D., Li, Y. and Jia, W. (2010). Preparation and characterization of molecularly
imprinted SiO2-TiO2 and photo-catalysis for 2,
4-dichlorophenol. Advanced Materials
Letters, 1: 188-192.
17.
Weon,
S. and Choi, W. (2016). TiO2 nanotubes with open channels as
deactivation-resistant photocatalyst for the degradation of volatile organic
compounds. Environmental Science &
Technology, 50(5): 2556-2563.
18.
Singh,
P., Vishnu, M. C., Sharma, K. K., Singh, R., Madhav, S., Tiwary, D. and Mishra,
P. K. (2016). Comparative study of dye degradation using TiO2-activated
carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and
photosonocatalytic reactor. Journal of
Desalination and Water Treatment, 57(43): 20552-20564.
19.
Sampaio,
M., Silva, C. G., Silva, A. M. T. and Faria, J. L. (2016). Kinetic modelling
for the photocatalytic degradation of phenol by using TiO2-coated
glass Raschig rings under simulated solar light. Journal of Chemical Technology and Biotechnology, 91(2): 346-352.
20.
Paz,
Y. and Heller, A. (1997). Photo-oxidatively self-cleaning transparent titanium
dioxide films on soda lime glass: The deleterious effect of sodium
contamination and its prevention. Journal
of Materials Research, 12: 2759-2766.
21.
Negishi,
N., Matsuzawa, S., Takeuchi, K. and Pichat, P. (2007). Transparent
micrometer-thick TiO2 films on SiO2-coated glass prepared
by repeated dip-coating/calcination: characteristics and photocatalytic
activities for removing acetaldehyde or toluene in air. Chemistry of Materials, 19: 3808-3814.
22.
Thiruvenkatachari,
R., Vigneswaran, S. and Moon, I. S. (2008). A review on UV/TiO2
photocatalytic oxidation process. Korean
Journal of Chemical Engineering, 25: 64-72.
23.
Fan,
S.-Q., Yang, G.-J., Li, C., Liu, G., Li, C. and Zhang, L.-Z. (2006).
Characterization of microstructure of nano-TiO2 coating deposited by
vacuum cold spraying. Journal of Thermal
Spray Technology, 15: 513-517.
24.
Yu,
J. and Zhao, X. (2001). Effect of surface treatment on the photocatalytic
activity and hydrophilic property of the sol-gel derived TiO2 thin
films. Materials Research Bulletin,
36: 97-107.
25.
O'Regan,
B., Moser, J., Anderson, M. and Graetzel, M. (1990). Vectorial electron
injection into transparent semiconductor membranes and electric field effects
on the dynamics of light-induced charge separation. Journal of Physical Chemistry, 94: 8720-8726.
26.
Takeda,
S., Suzuki, S., Odaka, H. and Hosono, H. (2001). Photocatalytic TiO2
thin film deposited onto glass by DC magnetron sputtering. Thin Solid Film, 392: 338-344.
27.
Yang,
G.-J., Li, C.-J., Han, F. and Ohmori, A. (2004). Microstructure and
photocatalytic performance of high velocity oxy-fuel sprayed TiO2
coatings. Thin Solid Films, 466:
81-85.
28.
Seo,
K.-L., Hyun, Y. and Lee, C.-S. (2014). Ultrasonochemical coating and
characterization of TiO2-coated zirconia fine particles. Journal of Industrial and Engineering,
20: 1819-1824.
29.
Park,
J. H., Kim, W.S., Jo, D.-H., Kim, J. S. and Park, J. M. (2014). Effect of Ce
conversion underlayer coating on the photo-catalytic activity of TiO2
sol–gel film deposited on hot-dip GI. Journal
of Industrial and Engineering, 20: 1965-1972.
30.
Zhang,
X., Cooke, K., Carmichael, P. and Parkin, I. (2013). The deposition of
crystallized TiO2 coatings by closed field unbalanced magnetron
sputter ion plating. Surface Coatings
Technology, 236: 290-295.
31.
Santillán,
M. J., Membrives, F., Quaranta, N. and Boccaccini, A. R. (2008).
Characterization of TiO2 nanoparticle suspensions for
electrophoretic deposition. Journal of
Nanoparticle Research, 10: 787-793.
32.
Barreto,
P. L. M., Roeder, J., Crespo, J. S., Maciel, G. R., Terenzi, H., Pires, A. T. N.
and Soldi, V. (2003). Effect of concentration, temperature and plasticizer
content on rheological properties of sodium caseinate and sodium
caseinate/sorbitol solutions and glass transition of their films. Food Chemistry, 82: 425-431.
33.
Sun,
S., Ding, J., Bao, J., Gao, C., Qi, Z. and Li, C. (2010). Photocatalytic
oxidation of gaseous formaldehyde on TiO2: An in situ DRIFTS study. Catalysis Letters, 137: 239-246.
34.
Ichiura,
H., Kitaoka, T. and Tanaka, H. (2003). Removal of indoor pollutants under UV
irradiation by a composite TiO2–zeolite sheet prepared using a
papermaking technique. Chemosphere,
50: 79-83.
35.
Yu,
H., Zhang, K. and Rossi, C. (2007). Experimental study of the photocatalytic
degradation of formaldehyde in indoor air using a nano-particulate titanium
dioxide photocatalyst. Indoor and Built
Environment, 16: 529-537.
36.
Liang,
W., Li, J. and Jin, Y. (2012). Photo-catalytic degradation of gaseous
formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV.
Building and Environment, 51:
345-350.