Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 100 - 108
DOI:
10.17576/mjas-2019-2301-12
SYNTHESIS AND CHARACTERIZATION OF SrSnO3
USING DIFFERENT SYNTHESIS METHODS
(Sintesis dan
Pencirian SrSnO3 yang Dihasilkan Melalui Kaedah Sintesis Berlainan)
Muhammad Arif Riza, Suhaila Sepeai, Norasikin Ahmad
Ludin, Mohd Asri Mat Teridi, Mohd
Adib Ibrahim*
Solar Energy
Research Institute (SERI)
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: mdadib@ukm.edu.my
Received:
13 April 2017; Accepted: 17 April 2018
Abstract
Perovskites
are materials that have many potential applications, such as humidity sensors,
transparent conductive oxides, photocatalysts and capacitors. Strontium
stannate (SrSnO3) is a perovskite semi-conductor material with a
wide band gap. Several synthesis methods are commonly used to form SrSnO3,
including solid-state reaction (SSR), sol-gel and hydrothermal. The SSR method
requires high temperature calcination. On the other hand, sol-gel and
hydrothermal methods merely need a lower calcination temperature to form
perovskite materials. The sol-gel methods were done by adding a surfactant to
Sr(NO3)2 and SnCl2 solution in water before
calcination. The autoclave approach was used in the hydrothermal method prior
to calcination to form SrSnO3. The objective of this study was to
determine the morphological and optical properties of SrSnO3
synthesized by sol-gel, hydrothermal and SSR. The band gap was calculated via Kubelka-Munk relations and were
found to be 4.05 eV (hydrothermal), 5.50 eV (sol-gel) and 3.95 eV (SSR).
Sol-gel methods showed the widest band gap for SrSnO3. Optical
results showed that there is a difference in terms of band gap for a perovskite
synthesized by the different methods. Mass reduction analysis by TGA showed a
sol-gel has mass loss of approximately 58% due to dehydration, which is more
than for hydrothermally synthesized SrSnO3. This reduction is higher
than for SrSnO3 synthesized by hydrothermal method. It was observed
that different synthesis methods impact the optical properties and morphology
of SrSnO3 powders.
Keywords: perovskites,
hydrothermal, sol-gel, band gap, solid-state reaction
Abstrak
Perovskit merupakan bahan yang
mempunyai banyak potensi untuk digunakan sebagai penderia kelembapan, oksida
konduktif lutsinar, fotomangkin dan kapasitor. Strontium stannat (SrSnO3)
adalah bahan separuh konduktif berstruktur perovskit dengan jurang jalur yang
besar. Beberapa kaedah sintesis biasanya digunakan untuk membentuk SrSnO3
termasuk tindak balas keadaan pepejal (SSR), sol-gel dan hidroterma. Kaedah SSR
memerlukan penalaan suhu yang tinggi, manakala kaedah sol-gel dan hidroterma
hanya memerlukan suhu pengkalsinan yang lebih rendah untuk membentuk bahan
perovskit. Kaedah sol-gel dilakukan dengan menambah surfaktan pada larutan
Sr(NO3)2 dan SnCl2 dalam air sebelum
pengkalsinan. Pendekatan autoklaf digunakan dalam kaedah hidroterma sebelum
pengkalsinan untuk membentuk SrSnO3. Objektif kajian ini adalah
untuk menentukan morfologi dan ciri optik bagi bahan SrSnO3 yang
disintesis melalui kaedah sol-gel, hidroterma dan SSR. Jurang jalur telah
dikira melalui hubungan Kubelka-Munk dan didapati nilainya adalah 4.05 eV
(hidroterma), 5.50 eV (sol-gel) dan 3.95 eV (SSR). Kaedah sol-gel menunjukkan
jurang jalur yang terbesar bagi SrSnO3. Ciri optik menunjukkan
wujudnya perbezaan antara jurang jalur bagi perovskit yang disintesis melalui
kaedah yang berlainan. Analisa pengurangan jisim menggunakan TGA menunjukkan
bahawa sol-gel mempunyai pengurangan jisim dianggarkan sebanyak 58% disebabkan
penyahhidratan. Pengurangan ini adalah lebih tinggi berbanding dengan SrSnO3
yang disintesis melalui kaedah hidroterma. Ia telah dilihat bahawa kaedah
sintesis boleh memberi kesan pada ciri optik dan morfologi pada serbuk SrSnO3.
Kata kunci: perovskit, hidroterma, sol-gel, julang jalur, tindak
balas keadaan pepejal
References
1.
Chen,
H. and Umezawa, N. (2014). Sensitization of perovskite strontium stannate SrSnO3
towards visible-light absorption by doping. International
Journal of Photoenergy, 2014: 3–6.
2.
Dohnalová,
Ž., Gorodylova, N., Šulcová, P. and Vlček, M. (2014). Synthesis and
characterization of terbium-doped SrSnO3 pigments. Ceramics International, 40: 12637–12645.
3.
Liu,
Q., Dai, J., Zhang, X., Zhu, G., Liu, Z. and Ding, G. (2011). Perovskite-type
transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films, 519(18): 6059–6063.
4.
Ecija,
A., Vidal, K., Larrañaga, A., Ortega-san-martín, L., Arriortua, M. I., Euskal,
V. and Ehu, U. (2012). Synthetic methods for perovskite materials – structure
and morphology. Advances in
Crystallization Processes, 19: 485–505.
5.
Para,
T., Reshi, H. A. and Shelke, V. (2016). Synthesis of ZnSnO3
nanostructure by sol gel method. AIP
Conference Proceedings, 1731: 1–4.
6.
Shan, C., Huang, T., Zhang, J., Han, M., Li,
Y., Hu, Z., & Chu, J. (2014). Optical and electrical properties of sol −
gel derived Ba−LaSnO3 transparent conducting films for potential
optoelectronic applications. The Journal
of Physical Chemistry C, 118(13): 6994-7001.
7.
Xu,
K., Yao, M., Chen, J., Zou, P., Peng, Y., Li, F. and Yao, X. (2015). Effect of
crystallization on the band structure and photoelectric property of SrTiO3
sol–gel derived thin film. Journal of
Alloys and Compounds, 653: 7–13.
8.
Kumar,
A., Quamara, J., Dillip, G., Joo, S. and Kumar, J. (2015). Fe(III) induced
structural, optical, and dielectric behavior of cetyltrimethyl ammonium bromide
stabilized strontium stannate nanoparticles synthesized by a facile wet
chemistry route. RSC Advance, 5(22):
17202–17209.
9.
Chen,
C., Cheng, J., Yu, S., Che, L. and Meng, Z. (2006). Hydrothermal synthesis of
perovskite bismuth ferrite crystallites. Journal
of Crystal Growth, 291(1): 135–139.
10.
Li-Jie,
H., Dong, Z., Shou-hua, F., Bo, Z. and Gang, C. (2012). Hydrothermal synthesis
and characterization of perovskite oxide AgTaO3. Chemical Research in Chinese Universities,
28: 760–763.
11.
Li,
C., Zhu, Y., Fang, S., Wang, H., Gui, Y., Bi, L. and Chen, R. (2011).
Preparation and characterization of SrSnO3 nanorods. Journal of Physics and Chemistry of Solids,
72(7): 869–874.
12.
Ahmadi,
S., Asim, N., Alghoul, M., Hammadi, F., Saeedfar, K., Ludin, N. and Sopian, K.
(2014). The role of physical techniques on the preparation of photoanodes for
dye sensitized solar cells. International
Journal of Photoenergy, 2014: 1-19.
13.
James,
K., Aravind, A. and Jayaraj, M. (2013). Structural, optical and magnetic
properties of Fe-doped barium stannate thin films grown by PLD. Applied Surface Science, 282: 121–125.
14.
Bellal,
B., Hadjarab, B., Bouguelia, A. and Trari, M. (2009). Visible light
photocatalytic reduction of water using SrSnO3 sensitized by CuFeO2.
Theoretical and Experimental Chemistry,
45(3): 160–166.
15.
Junploy,
P., Thongtem, T., Thongtem, S. and Phuruangrat, A. (2014). Decolorization of
methylene Blue by Ag/SrSnO3 composites under ultraviolet radiation. Journal of Nanomaterials, 2014: 67.
16.
Kotan,
Z., Ayvacikli, M., Karabulut, Y., Garcia-Guinea, J., Tormo, L., Canimoglu, A.
and Can, N. (2013). Solid state synthesis, characterization and optical
properties of Tb doped SrSnO3 phosphor. Journal of Alloys and Compounds, 581: 101–108.
17.
Liu,
Q., Wang, H., Chen, F. and Wu, W. (2008). Single-crystalline transparent and
conductive oxide films with the perovskite structure: Sb-doped SrSnO3.
Journal of Applied Physics, 103(9):
93709.