Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 109 - 115
DOI:
10.17576/mjas-2019-2301-13
OPTIMISATION OF
THE COMPOSITION AND PROCESS PARAMETER OF CsH2PO4/NaH2PO4/SiO2
SOLID ACID COMPOSITE VIA THE TAGUCHI METHOD
(Pengoptimuman Komposisi dan Parameter Proses Bagi
Komposit Asid Pepejal CsH2PO4/NaH2PO4/SiO2
Melalui Kaedah Taguchi)
Norsyahida
Mohammad1, Abu Bakar Mohamad1,2, Abdul Amir Hassan Kadhum1,2,
Kee Shyuan Loh1*
1Fuel
Cell Institute
2Department
of Chemical and Process Engineering, Faculty of Engineering and Built
Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: ksloh@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Solid
acid composites of CsH2PO4/NaH2PO4/SiO2
(CDP/SDP/SiO2) were synthesised with varied SDP to CDP and SiO2
to CDP mole fractions. The composites were arranged for optimisation via the Taguchi method with L9
orthogonal array, which manipulates four factors: the amount of SDP, amount of
SiO2, amount of pressure used for pellet production and operating
temperature. Responses were recorded as the averaged conductivity value for
each experimental set. The composite powders were uniaxially pressed to form
pellets of 1 mm thickness for conductivity measurements. Conductivity value was
averaged from three readings and used in the signal-to-noise (S/N) ratio
formula. The S/N ratio was set such that larger is better and calculated to
maximise the response required for the analysis. Operating temperature has the
largest effect on the conductivity value of solid acid composites, whereas the
amount of SiO2 has the smallest effect. The amount of SDP in the
composite has a larger effect than the pressure applied during pellet
production prior to the conductivity measurements. The optimised composite
consists of 0.2 mole fraction of SDP to CDP and 0.3 mole fraction of SiO2
to CDP pressed at 3 tonnes cm-2 to produce pellets and tested at the
temperature of 250 °C. The optimisation was validated by using analysis of
variance from the Design-Expert® software.
Keywords: solid acid composite, caesium dihydrogen
phosphate, Taguchi
Abstrak
Komposit asid pepejal CsH2PO4/NaH2PO4/SiO2
(CDP/SDP/SiO2) telah disintesis dengan pecahan mol SDP kepada CDP
dan SiO2 kepada CDP yang berbeza-beza. Komposit-komposit ini telah
menjalani proses pengoptimuman melalui kaedah Taguchi, dengan susunan ortogonal
L9 yang memanipulasi empat faktor iaitu kuantiti SDP, kuantiti SiO2,
kuantiti tekanan yang digunakan untuk penghasilan pelet dan suhu operasi.
Output dicatatkan sebagai nilai kekonduksian purata bagi setiap set eksperimen.
Serbuk komposit telah dimampatkan untuk membentuk pelet dengan ketebalan 1 mm
untuk analisa kekonduksian. Nilai kekonduksian yang diperoleh dijadikan purata
daripada tiga bacaan dan digunakan dalam formula nisbah isyarat kepada hingar
(S/N). Nisbah S/N telah ditetapkan sebagai ‘lebih besar adalah lebih baik’ dan
digunakan untuk memaksimakan tindak balas yang diperlukan untuk analisa. Suhu
operasi mempunyai impak terbesar ke atas nilai kekonduksian komposit asid
pepejal, manakala kuantiti SiO2 mempunyai impak yang paling kecil ke
atas nilai kekonduksian komposit asid pepejal. Kuantiti SDP dalam komposit
mempunyai kesan yang lebih besar berbanding tekanan yang digunakan semasa
penghasilan pelet sebelum analisa kekonduksian. Komposit yang telah
dioptimumkan terdiri daripada 0.2 pecahan mol SDP kepada CDP dan 0.3 pecahan
mol SiO2 kepada CDP, memerlukan tekanan sebanyak 3 tan cm-2
untuk menghasilkan pelet dan diuji pada suhu 250 °C. Proses pengoptimuman ini
disahkan oleh analisa varians dari perisian Design-Expert®.
Kata kunci: komposit asid pepejal, sesium dihidrogen fosfat, Taguchi
References
1.
Haile,
S. M., Boysen, D. A., Chisholm, C. R. I. and Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410: 910-913.
2.
Boysen,
D. A., Uda, T., Chisholm, C. R. I. and Haile, S. M. (2004). High-performance solid acid fuel cells
through humidity stabilization. Science, 303(5654):
68-70.
3.
Haile,
S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A. and Uda, T. (2006). Solid acid proton conductors: From laboratory
curiosities to fuel cell electrolytes.
Faraday Discussions, 134: 17-39.
4.
Taninouchi,
Y.-K., Uda, T., Awakura, Y., Ikeda, A. and Haile, S. M. (2007). Dehydration behavior of the superprotonic
conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30):
3182-3189.
5.
Unnikrishnan,
S. (2009). Micromachined dense palladium electrodes for thin-film solid acid
fuel cells. (PhD Dissertation), University of Twente, Enschede.
6.
Dupuis,
A.-C. (2011). Proton exchange membranes
for fuel cells operated at medium temperatures: Materials and experimental
techniques. Progress in Materials
Science, 56(3): 289-327.
7.
Piao,
J., Liao, S. and Liang, Z. (2009). A
novel cesium hydrogen sulfate–zeolite inorganic composite electrolyte membrane
for polymer electrolyte membrane fuel cell application. Journal of Power Sources, 193(2): 483-487.
8.
Lavrova,
G. V. and Ponomareva, V. G. (2008).
Intermediate-temperature composite proton electrolyte CsH5(PO4)2/SiO2:
Transport properties versus oxide characteristic. Solid State Ionics, 179(21–26): 1170-1173.
9.
Boysen,
D.A. (2004). Superprotonic solid acids: structure, properties, and applications
(PhD Dissertation), California Institute of Technology.
10.
Martsinkevich,
V. V. and Ponomareva, V. G. (2012).
Double salts Cs1-xMxH2PO4 (M
= Na, K, Rb) as proton conductors. Solid
State Ionics, 225: 236-240.
11.
Ponomareva,
V.G. and Shutova, E. S. (2007).
High-temperature behavior of CsH2PO4 and CsH2PO4–SiO2
composites. Solid State Ionics, 178(7–10):
729-734.
12.
Baranov,
A. I., Grebenev, V. V., Khodan, A. N., Dolbinina, V. V. and Efremova, E. P.
(2005). Optimization of superprotonic
acid salts for fuel cell applications.
Solid State Ionics, 176(39–40): 2871-2874.
13.
Mohammad,
N., Mohamad, A. B., Kadhum, A. A. H. and Loh, K. S. (2017). Effect of silica on the thermal behaviour and
ionic conductivity of mixed salt solid acid composites. Journal of Alloys and Compounds, 690: 896-902.