Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 109 - 115

DOI: 10.17576/mjas-2019-2301-13

 

 

 

OPTIMISATION OF THE COMPOSITION AND PROCESS PARAMETER OF CsH2PO4/NaH2PO4/SiO2 SOLID ACID COMPOSITE VIA THE TAGUCHI METHOD

 

(Pengoptimuman Komposisi dan Parameter Proses Bagi Komposit Asid Pepejal CsH2PO4/NaH2PO4/SiO2 Melalui Kaedah Taguchi)

 

Norsyahida Mohammad1, Abu Bakar Mohamad1,2, Abdul Amir Hassan Kadhum1,2, Kee Shyuan Loh1*

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  ksloh@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Solid acid composites of CsH2PO4/NaH2PO4/SiO2 (CDP/SDP/SiO2) were synthesised with varied SDP to CDP and SiO2 to CDP mole fractions. The composites were arranged for optimisation via the Taguchi method with L9 orthogonal array, which manipulates four factors: the amount of SDP, amount of SiO2, amount of pressure used for pellet production and operating temperature. Responses were recorded as the averaged conductivity value for each experimental set. The composite powders were uniaxially pressed to form pellets of 1 mm thickness for conductivity measurements. Conductivity value was averaged from three readings and used in the signal-to-noise (S/N) ratio formula. The S/N ratio was set such that larger is better and calculated to maximise the response required for the analysis. Operating temperature has the largest effect on the conductivity value of solid acid composites, whereas the amount of SiO2 has the smallest effect. The amount of SDP in the composite has a larger effect than the pressure applied during pellet production prior to the conductivity measurements. The optimised composite consists of 0.2 mole fraction of SDP to CDP and 0.3 mole fraction of SiO2 to CDP pressed at 3 tonnes cm-2 to produce pellets and tested at the temperature of 250 °C. The optimisation was validated by using analysis of variance from the Design-Expert® software.

 

Keywords:  solid acid composite, caesium dihydrogen phosphate, Taguchi

 

Abstrak

Komposit asid pepejal CsH2PO4/NaH2PO4/SiO2 (CDP/SDP/SiO2) telah disintesis dengan pecahan mol SDP kepada CDP dan SiO2 kepada CDP yang berbeza-beza. Komposit-komposit ini telah menjalani proses pengoptimuman melalui kaedah Taguchi, dengan susunan ortogonal L9 yang memanipulasi empat faktor iaitu kuantiti SDP, kuantiti SiO2, kuantiti tekanan yang digunakan untuk penghasilan pelet dan suhu operasi. Output dicatatkan sebagai nilai kekonduksian purata bagi setiap set eksperimen. Serbuk komposit telah dimampatkan untuk membentuk pelet dengan ketebalan 1 mm untuk analisa kekonduksian. Nilai kekonduksian yang diperoleh dijadikan purata daripada tiga bacaan dan digunakan dalam formula nisbah isyarat kepada hingar (S/N). Nisbah S/N telah ditetapkan sebagai ‘lebih besar adalah lebih baik’ dan digunakan untuk memaksimakan tindak balas yang diperlukan untuk analisa. Suhu operasi mempunyai impak terbesar ke atas nilai kekonduksian komposit asid pepejal, manakala kuantiti SiO2 mempunyai impak yang paling kecil ke atas nilai kekonduksian komposit asid pepejal. Kuantiti SDP dalam komposit mempunyai kesan yang lebih besar berbanding tekanan yang digunakan semasa penghasilan pelet sebelum analisa kekonduksian. Komposit yang telah dioptimumkan terdiri daripada 0.2 pecahan mol SDP kepada CDP dan 0.3 pecahan mol SiO2 kepada CDP, memerlukan tekanan sebanyak 3 tan cm-2 untuk menghasilkan pelet dan diuji pada suhu 250 °C. Proses pengoptimuman ini disahkan oleh analisa varians dari perisian Design-Expert®.

 

Kata kunci:  komposit asid pepejal, sesium dihidrogen fosfat, Taguchi

 

References

1.       Haile, S. M., Boysen, D. A., Chisholm, C. R. I. and Merle, R. B. (2001).  Solid acids as fuel cell electrolytes. Nature, 410: 910-913.

2.       Boysen, D. A., Uda, T., Chisholm, C. R. I. and Haile, S. M. (2004).  High-performance solid acid fuel cells through humidity stabilization. Science, 303(5654): 68-70.

3.       Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A. and Uda, T. (2006).  Solid acid proton conductors: From laboratory curiosities to fuel cell electrolytes. Faraday Discussions, 134: 17-39.

4.       Taninouchi, Y.-K., Uda, T., Awakura, Y., Ikeda, A. and Haile, S. M. (2007).  Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30): 3182-3189.

5.       Unnikrishnan, S. (2009). Micromachined dense palladium electrodes for thin-film solid acid fuel cells. (PhD Dissertation), University of Twente, Enschede.

6.       Dupuis, A.-C. (2011).  Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3): 289-327.

7.       Piao, J., Liao, S. and Liang, Z. (2009).  A novel cesium hydrogen sulfate–zeolite inorganic composite electrolyte membrane for polymer electrolyte membrane fuel cell application. Journal of Power Sources, 193(2): 483-487.

8.       Lavrova, G. V. and Ponomareva, V. G. (2008).  Intermediate-temperature composite proton electrolyte CsH5(PO4)2/SiO2: Transport properties versus oxide characteristic. Solid State Ionics, 179(21–26): 1170-1173.

9.       Boysen, D.A. (2004). Superprotonic solid acids: structure, properties, and applications (PhD Dissertation), California Institute of Technology.

10.    Martsinkevich, V. V. and Ponomareva, V. G. (2012).  Double salts Cs1-xMxH2PO4 (M = Na, K, Rb) as proton conductors. Solid State Ionics, 225: 236-240.

11.    Ponomareva, V.G. and Shutova, E. S. (2007).  High-temperature behavior of CsH2PO4 and CsH2PO4–SiO2 composites. Solid State Ionics, 178(7–10): 729-734.

12.    Baranov, A. I., Grebenev, V. V., Khodan, A. N., Dolbinina, V. V. and Efremova, E. P. (2005).  Optimization of superprotonic acid salts for fuel cell applications. Solid State Ionics, 176(39–40): 2871-2874.

13.    Mohammad, N., Mohamad, A. B., Kadhum, A. A. H. and Loh, K. S. (2017).  Effect of silica on the thermal behaviour and ionic conductivity of mixed salt solid acid composites. Journal of Alloys and Compounds, 690: 896-902.

 




Previous                    Content                    Next