Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 116 - 123
DOI:
10.17576/mjas-2019-2301-14
OPTIMIZATION OF
HYDROGEN PRODUCTION FROM FRUIT WASTE THROUGH MESOPHILIC AND THERMOPHILIC DARK
FERMENTATION: EFFECT OF SUBSTRATE-TO-INOCULUM RATIO
(Pengoptimuman Penghasilan Hidrogen dari Buangan Buah
melalui Fermentasi Tanpa Cahaya pada Kondisi Mesofilik dan Termofilik: Pengaruh
Nisbah Substrat-Inokulum)
Khamdan Cahyari1,2*,
Muslikhin Hidayat1, Siti Syamsiah1, Sarto1
1Department
of Chemical Engineering, Faculty of Engineering,
Gadjah Mada University, Indonesia
2Dept.
of Chemical Engineering, Faculty of Industrial Technology,
Universitas Islam Indonesia, Indonesia
*Corresponding author: khamdan.cahyari@uii.ac.id
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
This
research was aimed to optimize hydrogen production from fruit waste,
particularly on the effect of the substrate-to-inoculum ratio (SIR). Production
of hydrogen was carried out through dark fermentation process both in
mesophilic (30 °C, 1 atm) and thermophilic (55 °C, 1
atm) condition. Fermentation was conducted at SIR value ranging from 0.800 to
174 VSsubstrate/g VSinoc. In mesophilic fermentation, the
highest cumulative total gas yield was achieved at SIR value of 19
corresponding total gas yield of 113 ml STP/g VS (5%v of H2). In
thermophilic condition, the highest H2 yield was obtained at SIR
value of 0.800 VSsubstrate/g VSinoc with H2
yield of 294 mL STP/g VS (50 – 60%v of purity). It was noticed that the lower
SIR value, the higher hydrogen yield. In summary, it is concluded that
substrate-to-inoculum ratio (SIR) plays important role in dark fermentation
process to produce renewable energy of hydrogen fuel.
Keywords: hydrogen, fermentation,
substrate-to-inoculum ratio, fruit waste, renewable energy
Abstrak
Kajian ini merupakan langkah pengoptimuman
penghasilan hidrogen dari bahan buangan buah, khususnya pada pengaruh nisbah
substrat-inokulum (NSI). Penghasilan hidrogen dilakukan melalui proses
fermentasi tanpa cahaya pada kondisi mesofilik (30 °C, 1 atm) dan termofilik (55 °C, 1 atm). Fermentasi dilakukan dengan variasi nilai NSI antara 0,800 dan 174
g VSsubstrate/g VSinoc. Pada fermentasi mesofilik, hasil
gas total kumulatif tertinggi diperoleh pada nilai NSI 19 g VSsubstrate/g
VSinoc dengan nilai penghasilan gas sebesar 113 ml STP/g VS (5%v/v
gas H2). Sedangkan proses fermentasi termofilik, hasil hidrogen
kumulatif tertinggi dicapai pada nilai RSI 0,800 VSsubstrate/g VSinoc
sebesar 294 ml STP H2/g VS (ketulenan H2 50-60%v/v). Hal
ini menunjukkan bahawa semakin kecil nilai NSI, hasil gas hidrogen menjadi
semakin besar. Sehingga dapat disimpulkan bahawa faktor nisbah substrat
terhadap inokulum (NSI) memiliki peranan penting dalam proses fermentasi tanpa
cahaya untuk menghasilkan sumber tenaga baharu hidrogen.
Kata kunci: hidrogen, fermentasi, nisbah substrat-inokulum,
bahan buangan buah, tenaga baharu
References
1. Sugiawan, Y. and
Managi, S. (2016). The environmental Kuznets curve in Indonesia: Exploring the
potential of renewable energy. Energy
Policy, 98: 187–198.
2. Alam, M. S. and Paramati,
S. R. (2015). Do oil consumption and economic growth intensify environmental
degradation? Evidence from developing economies. Applied Economics, 47: 5186–5203.
3. Kumar, S.
(2016). Assessment of renewables for energy security and carbon mitigation in
Southeast Asia: The case of Indonesia and Thailand. Applied Energy, 163: 63–70.
4. Mujiyanto, S.
and Tiess, G. (2013). Secure energy supply in 2025: Indonesia’s need for an
energy policy strategy. Energy Policy,
61: 31–41.
5. Elbeshbishy, E.,
Dhar, B. R., Nakhla, G. and Lee, H.-S. (2017). A critical review on inhibition
of dark biohydrogen fermentation. Renewable
and Sustainable Energy Reviews, 79: 656–668.
6. Gustavsson, J.,
Cederberg, C. and Sonesson, U. (2011). Global food losses and food waste. Food Agricultural Organization of United
Nation. Access from http://www.fao.org/3/a-i2697e.pdf
7. Sanjaya, A.,
Cahyanto, M. and Millati, R. (2016). Mesophilic batch anaerobic digestion from
fruit fragments. Renewable Energy, 98:
135–141.
8. Millati, R.,
Nurrihadini, O. D., Suroto, D. A. and Cahyari, K. (2009). Waste refinery
program in Indonesia: Characterization of waste from “gemah ripah” fruit market
as a feedstock for biogas production. Department
of Chemical Engineering, Universitas Gadjah Mada, Indonesia.
9. Cappai, G., Gioannis, G. De and Muntoni, A. (2015). Effect of
inoculum to substrate ratio (ISR) on hydrogen production through dark
fermentation of food waste. In Proceeding
Sardinia, 15th International Waste Management and Landfill Symposium.
Cagliary, Italy: CISA Publisher.
10. Argun, H. and Dao,
S. (2017). Bio-hydrogen production from waste peach pulp by dark fermentation:
Effect of inoculum addition. International
Journal of Hydrogen Energy, 42: 2569–2574.
11. Jeihanipour, A.,
Karimi, K. and Taherzadeh, M. J. (2010). Enhancement of ethanol and biogas
production from high-crystalline cellulose by different modes of NMO
pretreatment. Biotechnology and
Bioengineering, 105: 469–476.
12. APHA (2012).
Standard methods for the examination of water and wastewater. American Public Health Association, DC.
13. FAOUN. (2014).
Data of Production Quantity of Crops. Access from http://www.fao.org/faostat/en/#data/QC
[May 31, 2017].
14. Górnaś, P.,
Mišina, I., Olšteine, A., Krasnova, I., Pugajeva, I., Lācis, G., Siger, A.,
Michalak, M., Soliven, A. and Segliņa, D. (2015). Phenolic compounds in
different fruit parts of crab apple: Dihydrochalcones as promising quality
markers of industrial apple pomace by-products. Industrial Crops and Products, 74: 607–612.
15. Wang, L., Xu,
H., Yuan, F., Pan, Q., Fan, R. and Gao, Y. (2015). Physicochemical
characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4: 250–258.
16. Raji, Z.,
Khodaiyan, F., Rezaei, K., Kiani, H. and Hosseini, S. S. (2017). Extraction
optimization and physicochemical properties of pectin from melon peel. International Journal of Biological
Macromolecules, 98: 709–716.
17. Mallek-Ayadi,
S., Bahloul, N. and Kechaou, N. (2017). Characterization, phenolic compounds
and functional properties of Cucumis melo L. peels. Food Chemistry, 221: 1691–1697.
18. Macagnan, F. T.,
Santos, L. R. dos, Roberto, B. S., de Moura, F. A., Bizzani, M. and da Silva,
L. P. (2015). Biological properties of apple pomace, orange bagasse and passion
fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 6: 1–6.
19. Atkinson, R. G.
(2017). Phenylpropenes: Occurrence, distribution, and biosynthesis in fruit. Journal of Agricultural and Food Chemistry,
66(10): 2259-2272.
20. Ruiz, B. and Flotats,
X. (2016). Effect of limonene on batch anaerobic digestion of citrus peel
waste. Biochemical Engineering Journal,
109: 9-18.
21. Barreca, D.,
Bellocco, E., Laganà, G., Ginestra, G. and Bisignano, C. (2014). Biochemical
and antimicrobial activity of phloretin and its glycosilated derivatives
present in apple and kumquat. Food
Chemistry, 160: 292–297.
22. Lin, C.-H., Lin,
S. H., Lin, C.-C., Liu, Y.-C., Chen, C.-J., Chu, C.-L., Huang, H-C. and Lin,
M.-K. (2016). Inhibitory effect of clove methanolic extract and eugenol on
dendritic cell functions. Journal of
Functional Foods, 27: 439–447.
23. Eker, S. and
Sarp, M. (2017). Hydrogen gas production from waste paper by dark fermentation:
Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy, 42: 2562–2568.
24. Saratale, G. D.,
Chen, S.-D., Lo, Y.-C., Saratale, R. G. and Chang, J.-S. (2008). Outlook of
biohydrogen production from lignocellulosic feedstock using dark fermentation -
a review. Journal of Scientific and
Industrial Research, 67: 962–979.
25. Laothanachareon,
T., Kanchanasuta, S., Mhuanthong, W., Phalakornkule, C., Pisutpaisal, N. and Champreda,
V. (2014). Analysis of microbial community adaptation in mesophilic hydrogen
fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management, 144:
143–151.
26. Gokfiliz, P. and
Karapinar, I. (2017). The effect of support particle type on thermophilic
hydrogen production by immobilized batch dark fermentation. International Journal of Hydrogen Energy,
42: 2553–2561.