Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 116 - 123

DOI: 10.17576/mjas-2019-2301-14

 

 

 

OPTIMIZATION OF HYDROGEN PRODUCTION FROM FRUIT WASTE THROUGH MESOPHILIC AND THERMOPHILIC DARK FERMENTATION: EFFECT OF SUBSTRATE-TO-INOCULUM RATIO

 

(Pengoptimuman Penghasilan Hidrogen dari Buangan Buah melalui Fermentasi Tanpa Cahaya pada Kondisi Mesofilik dan Termofilik: Pengaruh Nisbah Substrat-Inokulum)

 

Khamdan Cahyari1,2*, Muslikhin Hidayat1, Siti Syamsiah1, Sarto1

 

1Department of Chemical Engineering, Faculty of Engineering,

Gadjah Mada University, Indonesia

2Dept. of Chemical Engineering, Faculty of Industrial Technology,

Universitas Islam Indonesia, Indonesia

 

*Corresponding author:  khamdan.cahyari@uii.ac.id 

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

This research was aimed to optimize hydrogen production from fruit waste, particularly on the effect of the substrate-to-inoculum ratio (SIR). Production of hydrogen was carried out through dark fermentation process both in mesophilic (30 °C, 1 atm) and thermophilic (55 °C, 1 atm) condition. Fermentation was conducted at SIR value ranging from 0.800 to 174 VSsubstrate/g VSinoc. In mesophilic fermentation, the highest cumulative total gas yield was achieved at SIR value of 19 corresponding total gas yield of 113 ml STP/g VS (5%v of H2). In thermophilic condition, the highest H2 yield was obtained at SIR value of 0.800 VSsubstrate/g VSinoc with H2 yield of 294 mL STP/g VS (50 – 60%v of purity). It was noticed that the lower SIR value, the higher hydrogen yield. In summary, it is concluded that substrate-to-inoculum ratio (SIR) plays important role in dark fermentation process to produce renewable energy of hydrogen fuel.

 

Keywords:  hydrogen, fermentation, substrate-to-inoculum ratio, fruit waste, renewable energy

 

Abstrak

Kajian ini merupakan langkah pengoptimuman penghasilan hidrogen dari bahan buangan buah, khususnya pada pengaruh nisbah substrat-inokulum (NSI). Penghasilan hidrogen dilakukan melalui proses fermentasi tanpa cahaya pada kondisi mesofilik (30 °C, 1 atm) dan termofilik (55 °C, 1 atm). Fermentasi dilakukan dengan variasi nilai NSI antara 0,800 dan 174 g VSsubstrate/g VSinoc. Pada fermentasi mesofilik, hasil gas total kumulatif tertinggi diperoleh pada nilai NSI 19 g VSsubstrate/g VSinoc dengan nilai penghasilan gas sebesar 113 ml STP/g VS (5%v/v gas H2). Sedangkan proses fermentasi termofilik, hasil hidrogen kumulatif tertinggi dicapai pada nilai RSI 0,800 VSsubstrate/g VSinoc sebesar 294 ml STP H2/g VS (ketulenan H2 50-60%v/v). Hal ini menunjukkan bahawa semakin kecil nilai NSI, hasil gas hidrogen menjadi semakin besar. Sehingga dapat disimpulkan bahawa faktor nisbah substrat terhadap inokulum (NSI) memiliki peranan penting dalam proses fermentasi tanpa cahaya untuk menghasilkan sumber tenaga baharu hidrogen.

 

Kata kunci:  hidrogen, fermentasi, nisbah substrat-inokulum, bahan buangan buah, tenaga baharu

 

References

1.       Sugiawan, Y. and Managi, S. (2016). The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Policy, 98: 187–198.

2.       Alam, M. S. and Paramati, S. R. (2015). Do oil consumption and economic growth intensify environmental degradation? Evidence from developing economies. Applied Economics, 47: 5186–5203.

3.       Kumar, S. (2016). Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand. Applied Energy, 163: 63–70.

4.       Mujiyanto, S. and Tiess, G. (2013). Secure energy supply in 2025: Indonesia’s need for an energy policy strategy. Energy Policy, 61: 31–41.

5.       Elbeshbishy, E., Dhar, B. R., Nakhla, G. and Lee, H.-S. (2017). A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews, 79: 656–668.

6.       Gustavsson, J., Cederberg, C. and Sonesson, U. (2011). Global food losses and food waste. Food Agricultural Organization of United Nation. Access from http://www.fao.org/3/a-i2697e.pdf

7.       Sanjaya, A., Cahyanto, M. and Millati, R. (2016). Mesophilic batch anaerobic digestion from fruit fragments. Renewable Energy, 98: 135–141.

8.       Millati, R., Nurrihadini, O. D., Suroto, D. A. and Cahyari, K. (2009). Waste refinery program in Indonesia: Characterization of waste from “gemah ripah” fruit market as a feedstock for biogas production. Department of Chemical Engineering, Universitas Gadjah Mada, Indonesia.

9.       Cappai, G., Gioannis, G. De and Muntoni, A. (2015). Effect of inoculum to substrate ratio (ISR) on hydrogen production through dark fermentation of food waste. In Proceeding Sardinia, 15th International Waste Management and Landfill Symposium. Cagliary, Italy: CISA Publisher.

10.    Argun, H. and Dao, S. (2017). Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. International Journal of Hydrogen Energy, 42: 2569–2574.

11.    Jeihanipour, A., Karimi, K. and Taherzadeh, M. J. (2010). Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnology and Bioengineering, 105: 469–476.

12.    APHA (2012). Standard methods for the examination of water and wastewater. American Public Health Association, DC.

13.    FAOUN. (2014). Data of Production Quantity of Crops. Access from http://www.fao.org/faostat/en/#data/QC [May 31, 2017].

14.    Górnaś, P., Mišina, I., Olšteine, A., Krasnova, I., Pugajeva, I., Lācis, G., Siger, A., Michalak, M., Soliven, A. and Segliņa, D. (2015). Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Industrial Crops and Products, 74: 607–612.

15.    Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R. and Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4: 250–258.

16.    Raji, Z., Khodaiyan, F., Rezaei, K., Kiani, H. and Hosseini, S. S. (2017). Extraction optimization and physicochemical properties of pectin from melon peel. International Journal of Biological Macromolecules, 98: 709–716.

17.    Mallek-Ayadi, S., Bahloul, N. and Kechaou, N. (2017). Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chemistry, 221: 1691–1697.

18.    Macagnan, F. T., Santos, L. R. dos, Roberto, B. S., de Moura, F. A., Bizzani, M. and da Silva, L. P. (2015). Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 6: 1–6.

19.    Atkinson, R. G. (2017). Phenylpropenes: Occurrence, distribution, and biosynthesis in fruit. Journal of Agricultural and Food Chemistry, 66(10): 2259-2272.

20.    Ruiz, B. and Flotats, X. (2016). Effect of limonene on batch anaerobic digestion of citrus peel waste. Biochemical Engineering Journal, 109: 9-18.

21.    Barreca, D., Bellocco, E., Laganà, G., Ginestra, G. and Bisignano, C. (2014). Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chemistry, 160: 292–297.

22.    Lin, C.-H., Lin, S. H., Lin, C.-C., Liu, Y.-C., Chen, C.-J., Chu, C.-L., Huang, H-C. and Lin, M.-K. (2016). Inhibitory effect of clove methanolic extract and eugenol on dendritic cell functions. Journal of Functional Foods, 27: 439–447.

23.    Eker, S. and Sarp, M. (2017). Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy, 42: 2562–2568.

24.    Saratale, G. D., Chen, S.-D., Lo, Y.-C., Saratale, R. G. and Chang, J.-S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. Journal of Scientific and Industrial Research, 67: 962–979.

25.    Laothanachareon, T., Kanchanasuta, S., Mhuanthong, W., Phalakornkule, C., Pisutpaisal, N. and Champreda, V. (2014). Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. Journal of Environmental Management, 144: 143–151.

26.    Gokfiliz, P. and Karapinar, I. (2017). The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. International Journal of Hydrogen Energy, 42: 2553–2561.

 




Previous                    Content                    Next