Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 124 - 130

DOI: 10.17576/mjas-2019-2301-15

 

 

 

DEHYDRATING ETHANOL USING A TERNARY SOLUTE AND EXTRACTIVE BATCH DISTILLATION

 

(Pengeringan Etanol Menggunakan Zat Larut Ternari dan Penyulingan Kelompok Hasil Ekstrak)

 

Tjukup Marnoto1, I Gusti Suinarcana Budiaman1, Chintya Rizki Hapsari1, Risqi Angga Y. Prakosa1, Khuzaimah Arifin2*

 

1Chemical Engineering Department, Industrial Engineering Faculty

Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia 55283

2Fuel Cell Institute,

 Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  khuzaim@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

Anhydrous bioethanol is a material used in many applications including biofuel.  Commonly, bioethanol is produced through sugar fermentation which results in a low concentration of ethanol. For utilization as biofuel, the lowest ethanol concentration should be 99.5%. Distillation is common technique to dry a mixture solution, however, the mixture of bioethanol and water is forming an azeotrope that limit the concentration of 96% ethanol. This paper discusses ethanol dehydration through extractive batch distillation by the addition of a ternary solute sodium hydroxide, citric acid, sulfuric acid, glycerol or ethylene glycol to ethanol. The initial concentration of ethanol used was 86% v/v, and the amount of ternary solute added was selected based on the colligative properties of the solution, which included a boiling point elevation (ΔTB) that ranged from 5 to 25 °C. All the ternary solutes could break or shift the ethanol-water azeotrope. The highest concentration of ethanol was 99.91% v/v at ΔTB = 25 °C with sulfuric acid as the ternary component. The resulted ethanol concentration exhibited a linear relationship with ΔTB, which was also affected by the boiling point of the ternary solute. This study successfully produced anhydrous bioethanol by low cost and simple distillation process.

 

Keywords:  bioethanol, azeotrope, colligative properties, ternary solute

 

Abstrak

Bioetanol anhidrat adalah bahan yang diperlukan dalam pelbagai aplikasi termasuk biofuel. Biasanya, bioetanol dihasilkan melalui penapaian gula, yang menghasilkan kepekatan etanol yang rendah. Supaya boleh digunakan dalam aplikasi biofuel, diperlukan kepekatan etanol sekurang-kurangnya 99.5%. Distilasi adalah kaedah yang umum digunakan untuk mengeringkan larutan, namun campuran bioetanol dan air membentuk azeotrop yang membatasi kepekatan 96% etanol. Kajian ini membincangkan pengeringan etanol dengan penambahan zat larut ternari: natrium hidroksida, asid sitrik, asid sulfurik, gliserol atau etilena glikol. Kepekatan awal etanol yang digunakan adalah 86% v/v. Jumlah zat larut yang ditambahkan dipilih berdasarkan sifat koligatif pelarut, termasuk ketinggian titik didih (ΔTB) yang berkisar antara 5 hingga 25 °C. Semua bahan terner didapati boleh memecahkan atau mengalihkan azeotrop air etanol; kepekatan tertinggi etanol yang diperoleh ialah 99.91% pada ΔTB = 25 °C dengan asid sulfurik sebagai komponen ternari. Kepekatan etanol yang dihasilkan memperlihatkan hubungan linear dengan ΔTB, yang juga dipengaruhi oleh titik didih zat larut ternari. Kajian ini telah berjaya menghasilkan bioethanol kering melalui kaedah penyulingan yang murah dan sederhana.

 

Kata kunci:  bioetanol, azeotrop, sifat koligatif, zat larut ternar

 

References

1.       Soares, R. B., Pessoa, F. L. P and Mendes, M. F. (2015). Dehydration of ethanol with different salts in a packed distillation column. Process Safety and Environmental Protection,  93:147-153.

2.       Chen, W-C, Sheng, C-T, Liu, Y-C, Chen, W-J, Huang, W-L. and Chang S-H. (2014). Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve. Applied Energy, 135:483-489.

3.       Dai, W., Word, D. P. and Hahn, J. (2014). Modeling and dynamic optimization of fuel-grade ethanol fermentation using fed-batch process. Control Engineering Practice, 22: 231-241.

4.       Gomis, V, Pedraza, R, Saquete, M. D., Font, A. and García-Cano J. (2015). Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend. Fuel, 139:568-574.

5.       Kalyani, D.C., Zamanzadeh, M., Müller, G. and Horn, S. J. (2017). Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion. Applied Energy, 193:210-219.

6.       Liu, H., Hu, B. and Jin, C. (2016). Effects of different alcohols additives on solubility of hydrous ethanol/diesel fuel blends. Fuel, 184: 440-448.

7.       Romão, B. B, da Silva, F. B., de Resende, M. M. and Cardoso, V. L. (2012). Ethanol production from hydrolyzed soybean molasses. Energy & Fuels, 26(4): 2310-2316.

8.       Sánchez, Ó. J. and Cardona, C. A. (2012). Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis. Bioresource Technology, 104: 305-314.

9.       Sato, K., Aoki, K., Sugimoto, K., Izumi, K., Inoue, S. and Saito J. (2008). Dehydrating performance of commercial LTA zeolite membranes and application to fuel grade bio-ethanol production by hybrid distillation/vapor permeation process. Microporous and Mesoporous Materials, 115(1): 184-188.

10.    Kusmiyati, S. H. (2015). Fuel grade bioethanol production from Iles-iles (Amorphophaluscampanulatus) tuber. Procedia Environmental Sciences, 23: 199-206.

11.    Al-Asheh, S., Banat, F. and Al-Lagtah N. (2004). Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design, 82(7): 855-864.

12.    Kupiec, K., Rakoczy, J., Komorowicz, T. and Larwa, B. (2014). Heat and mass transfer in adsorption–desorption cyclic process for ethanol dehydration. Chemical Engineering Journal. 241: 485-494.

13.    Pereiro, A.B., Araújo, J. M. M, Esperança, J. M. S. S,  Marrucho, I. M. and Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems – A review. The Journal of Chemical Thermodynamics, 46: 2-28.

14.    Rodríguez, N. R., González, A. S. B., Tijssen, P. M. A. and Kroon, M. C. (2015). Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation. Fluid Phase Equilibria, 385: 72-78.

15.    Veiga, B.A., dos Santos, J. T. F, de Lima Luz Junior,  L. F. and Corazza, M. L. (2017). Phase equilibrium measurements and thermodynamic modelling for the systems involving valeric acid, ethanol, ethyl valerate and water plus CO2. The Journal of Chemical Thermodynamics, 112: 240-248.

16.    Aouinti, L. and Belbachir, M. (2008). A maghnite-clay-H/polymer membrane for separation of ethanol–water azeotrope. Applied Clay Science, 39(1): 78-85.

17.    Oliveira, F. S., Dohrn, R., Pereiro, A. B., Araújo, J. M. M, Rebelo, L. P. N. and Marrucho, I. M. (2016). Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilibria, 419: 57-66.

18.    Wang, Y., Gong, C., Sun, J., Gao, H., Zheng, S. and Xu, S. (2010). Separation of ethanol/water azeotrope using compound starch-based adsorbents. Bioresource Technology, 101(15):6170-6176.

19.    Mahdi, T., Ahmad, A., Nasef, M. M. and Ripin A. (2015). State-of-the-art technologies for separation of azeotropic mixtures. Separation & Purification Reviews, 44(4):308-330.

20.    Llano-Restrepo, M. and Aguilar-Arias, J. (2003). Modeling and simulation of saline extractive distillation columns for the production of absolute ethanol. Computers & Chemical Engineering, 27(4): 527-549.

21.    Ligero, E. L. and Ravagnani, T. M. K. (2003). Dehydration of ethanol with salt extractive distillation—a comparative analysis between processes with salt recovery. Chemical Engineering and Processing: Process Intensification, 42(7): 543-552.

22.    Zhao, L., Lyu, X., Wang, W., Shan, J. and Qiu, T. (2017). Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Computers & Chemical Engineering, 100: 27-37.

23.    Luyben, W. L. (2016). Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chemical Engineering Research and Design, 106: 253-262.

24.    You, X., Rodriguez-Donis, I. and Gerbaud, V. (2014). Extractive distillation process optimisation of the 1.0-1a class system, acetone - methanol with water.  Klemeš, J. J., Varbanov, P. S. and Liew, P. Y. (Editors). Computer Aided Chemical Engineering, 33: pp. 1315-1320.

 




Previous                    Content                    Next