Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 124 - 130
DOI:
10.17576/mjas-2019-2301-15
DEHYDRATING ETHANOL USING A TERNARY SOLUTE AND
EXTRACTIVE BATCH DISTILLATION
(Pengeringan Etanol
Menggunakan Zat Larut Ternari dan Penyulingan Kelompok Hasil Ekstrak)
Tjukup Marnoto1, I Gusti Suinarcana
Budiaman1, Chintya Rizki Hapsari1, Risqi Angga Y. Prakosa1, Khuzaimah Arifin2*
1Chemical Engineering Department, Industrial Engineering Faculty
Universitas Pembangunan
Nasional “Veteran” Yogyakarta, Indonesia 55283
2Fuel Cell Institute,
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
*Corresponding
author: khuzaim@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Anhydrous
bioethanol is a material used in many applications including biofuel. Commonly, bioethanol is produced through
sugar fermentation which results in a low concentration of ethanol. For
utilization as biofuel, the lowest ethanol concentration should be 99.5%.
Distillation is common technique to dry a mixture solution, however, the
mixture of bioethanol and water is forming an azeotrope that limit the
concentration of 96% ethanol. This paper discusses ethanol dehydration through
extractive batch distillation by the addition of a ternary solute sodium
hydroxide, citric acid, sulfuric acid, glycerol or ethylene glycol to ethanol.
The initial concentration of ethanol used was 86% v/v, and the amount of
ternary solute added was selected based on the colligative properties of the
solution, which included a boiling point elevation (ΔTB) that ranged from 5 to 25 °C. All the ternary solutes
could break or shift the ethanol-water azeotrope. The highest concentration of
ethanol was 99.91% v/v at ΔTB
= 25 °C with sulfuric acid as the ternary component. The resulted ethanol
concentration exhibited a linear relationship with ΔTB, which was also affected by the boiling point of the
ternary solute. This study successfully produced anhydrous bioethanol by low
cost and simple distillation process.
Keywords: bioethanol, azeotrope, colligative properties,
ternary solute
Abstrak
Bioetanol anhidrat adalah bahan
yang diperlukan dalam pelbagai aplikasi termasuk biofuel. Biasanya, bioetanol
dihasilkan melalui penapaian gula, yang menghasilkan kepekatan etanol yang
rendah. Supaya boleh digunakan dalam aplikasi biofuel, diperlukan kepekatan
etanol sekurang-kurangnya 99.5%. Distilasi adalah kaedah yang umum digunakan
untuk mengeringkan larutan, namun campuran bioetanol dan air membentuk azeotrop
yang membatasi kepekatan 96% etanol. Kajian ini membincangkan pengeringan
etanol dengan penambahan zat larut ternari: natrium hidroksida, asid sitrik,
asid sulfurik, gliserol atau etilena glikol. Kepekatan awal etanol yang
digunakan adalah 86% v/v. Jumlah zat larut yang ditambahkan dipilih berdasarkan
sifat koligatif pelarut, termasuk ketinggian titik didih (ΔTB) yang berkisar antara 5 hingga 25 °C. Semua bahan
terner didapati boleh memecahkan atau mengalihkan azeotrop air etanol;
kepekatan tertinggi etanol yang diperoleh ialah 99.91% pada ΔTB = 25 °C dengan asid sulfurik
sebagai komponen ternari. Kepekatan etanol yang dihasilkan memperlihatkan
hubungan linear dengan ΔTB,
yang juga dipengaruhi oleh titik didih zat larut ternari. Kajian ini telah
berjaya menghasilkan bioethanol kering melalui kaedah penyulingan yang murah
dan sederhana.
Kata kunci: bioetanol, azeotrop, sifat koligatif, zat larut ternar
References
1.
Soares,
R. B., Pessoa, F. L. P and Mendes, M. F. (2015). Dehydration of ethanol with
different salts in a packed distillation column. Process Safety and Environmental Protection, 93:147-153.
2.
Chen,
W-C, Sheng, C-T, Liu, Y-C, Chen, W-J, Huang, W-L. and Chang S-H. (2014).
Optimizing the efficiency of anhydrous ethanol purification via regenerable
molecular sieve. Applied Energy, 135:483-489.
3.
Dai,
W., Word, D. P. and Hahn, J. (2014). Modeling and dynamic optimization of
fuel-grade ethanol fermentation using fed-batch process. Control Engineering Practice, 22: 231-241.
4.
Gomis,
V, Pedraza, R, Saquete, M. D., Font, A. and García-Cano J. (2015). Ethanol
dehydration via azeotropic distillation with gasoline fractions as entrainers:
A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend. Fuel, 139:568-574.
5.
Kalyani,
D.C., Zamanzadeh, M., Müller, G. and Horn, S. J. (2017). Biofuel production
from birch wood by combining high solid loading simultaneous saccharification
and fermentation and anaerobic digestion. Applied
Energy, 193:210-219.
6.
Liu,
H., Hu, B. and Jin, C. (2016). Effects of different alcohols additives on
solubility of hydrous ethanol/diesel fuel blends. Fuel, 184: 440-448.
7.
Romão,
B. B, da Silva, F. B., de Resende, M. M. and Cardoso, V. L. (2012). Ethanol production
from hydrolyzed soybean molasses. Energy
& Fuels, 26(4): 2310-2316.
8.
Sánchez,
Ó. J. and Cardona, C. A. (2012). Conceptual design of cost-effective and
environmentally-friendly configurations for fuel ethanol production from
sugarcane by knowledge-based process synthesis. Bioresource Technology, 104: 305-314.
9.
Sato,
K., Aoki, K., Sugimoto, K., Izumi, K., Inoue, S. and Saito J. (2008).
Dehydrating performance of commercial LTA zeolite membranes and application to
fuel grade bio-ethanol production by hybrid distillation/vapor permeation
process. Microporous and Mesoporous
Materials, 115(1): 184-188.
10.
Kusmiyati,
S. H. (2015). Fuel grade bioethanol production from Iles-iles (Amorphophaluscampanulatus) tuber. Procedia Environmental Sciences, 23: 199-206.
11.
Al-Asheh,
S., Banat, F. and Al-Lagtah N. (2004). Separation of ethanol–water mixtures
using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design, 82(7): 855-864.
12.
Kupiec,
K., Rakoczy, J., Komorowicz, T. and Larwa, B. (2014). Heat and mass transfer in
adsorption–desorption cyclic process for ethanol dehydration. Chemical Engineering Journal. 241: 485-494.
13.
Pereiro,
A.B., Araújo, J. M. M, Esperança, J. M. S. S, Marrucho, I. M. and Rebelo, L. P. N. (2012).
Ionic liquids in separations of azeotropic systems – A review. The Journal of Chemical Thermodynamics, 46:
2-28.
14.
Rodríguez,
N. R., González, A. S. B., Tijssen, P. M. A. and Kroon, M. C. (2015). Low
transition temperature mixtures (LTTMs) as novel entrainers in extractive
distillation. Fluid Phase Equilibria,
385: 72-78.
15.
Veiga,
B.A., dos Santos, J. T. F, de Lima Luz Junior, L. F. and Corazza, M. L. (2017). Phase
equilibrium measurements and thermodynamic modelling for the systems involving valeric
acid, ethanol, ethyl valerate and water plus CO2. The Journal of Chemical Thermodynamics, 112:
240-248.
16.
Aouinti,
L. and Belbachir, M. (2008). A maghnite-clay-H/polymer membrane for separation
of ethanol–water azeotrope. Applied Clay
Science, 39(1): 78-85.
17.
Oliveira,
F. S., Dohrn, R., Pereiro, A. B., Araújo, J. M. M, Rebelo, L. P. N. and Marrucho,
I. M. (2016). Designing high ionicity ionic liquids based on
1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilibria, 419: 57-66.
18.
Wang,
Y., Gong, C., Sun, J., Gao, H., Zheng, S. and Xu, S. (2010). Separation of
ethanol/water azeotrope using compound starch-based adsorbents. Bioresource Technology,
101(15):6170-6176.
19.
Mahdi,
T., Ahmad, A., Nasef, M. M. and Ripin A. (2015). State-of-the-art technologies
for separation of azeotropic mixtures. Separation
& Purification Reviews, 44(4):308-330.
20.
Llano-Restrepo,
M. and Aguilar-Arias, J. (2003). Modeling and simulation of saline extractive
distillation columns for the production of absolute ethanol. Computers & Chemical Engineering,
27(4): 527-549.
21.
Ligero,
E. L. and Ravagnani, T. M. K. (2003). Dehydration of ethanol with salt
extractive distillation—a comparative analysis between processes with salt
recovery. Chemical Engineering and
Processing: Process Intensification, 42(7):
543-552.
22.
Zhao,
L., Lyu, X., Wang, W., Shan, J. and Qiu, T. (2017). Comparison of heterogeneous
azeotropic distillation and extractive distillation methods for ternary
azeotrope ethanol/toluene/water separation. Computers
& Chemical Engineering, 100: 27-37.
23.
Luyben,
W. L. (2016). Control comparison of conventional and thermally coupled ternary
extractive distillation processes. Chemical
Engineering Research and Design, 106: 253-262.
24.
You,
X., Rodriguez-Donis, I. and Gerbaud, V. (2014). Extractive distillation process
optimisation of the 1.0-1a class system, acetone - methanol with water. Klemeš, J. J., Varbanov, P. S. and Liew, P.
Y. (Editors). Computer Aided Chemical
Engineering, 33: pp. 1315-1320.