Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 131 - 137

DOI: 10.17576/mjas-2019-2301-16

 

 

 

RESISTANCE OF NATIVE BACTERIA ISOLATED FROM ACTIVATED SLUDGE TOWARDS IRON AND MANGANESE

 

(Ketahanan Pencilan Bakteria Asli daripada Enapcemar Teraktif terhadap Ferum dan Mangan)

 

Nuratiqah Marsidi1, Hassimi Abu Hasan1*, Mohd Izuan Effendi Halmi2, Siti Rozaimah Sheikh Abdullah1

 

1Chemical Engineering Program, Research Centre for Sustainable Process Technology (CESPRO),

Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Land Management, Faculty of Agriculture,

Universiti Putra Malaysia, 43400 Serdang, Selangor. Malaysia

 

*Corresponding author:  hassimi@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

A study was conducted to observe the resistance of native isolated bacteria towards selected heavy metals (iron; Fe and manganese; Mn) in a separate exposure. Isolated bacteria were evaluated by culturing them in nutrient broth medium that contained approximately 3 ×106 CFU/mL bacteria with different initial concentrations (0, 50, 100 and 200 mg/L). Result showed that a plate with bacterial growth indicated bacterial resistance, which was verified based on CFU/mL. At 0 mg/L, bacteria grew well on the plate with Fe and Mn. The bacterial number began to decrease at 50 and 100 mg/L for Fe and at 200 mg/L for Mn. Only a few colonies survived (isolate AM2) the toxicity of high Fe amount; the isolated bacteria almost showed no growth along the plate. AM2, AM3 and AM4 presented resistance to Mn until 200 mg/L, but not AM6. The bacteria showed no growth at 100 and 200 mg/L. Thus, the Fe and Mn concentrations that can be applied during acclimatisation ranged from 0 mg/L to 200 mg/L with isolated AM2 and AM4 for Fe and Mn removal.

 

Keywords:  biosorption, drinking water resources, iron, manganese, resistance bacteria

 

Abstrak

Satu kajian telah dijalankan untuk melihat tahap ketahanan bakteria tempatan terhadap logam berat terpilih (ferum; Fe dan mangan; Mn) dalam pendedahan berasingan. Bakteria telah diuji dengan pengkulturan dalam medium kaldu nutrien mengandungi kira-kira 3x106 CFU/mL bakteria dengan kepekatan logam berat yang berbeza (0, 50, 100 and 200 mg/L). Sebagai keputusan, plat yang mempunyai pertumbuhan bakteria menunjukkan bahawa bakteria merintang kepada kepekatan masing-masing dan disahkan berasaskan unit pembentukan koloni per mL. Pada 0 mg/L, bakteria tumbuh di sepanjang plat yang mengandungi Fe dan Mn. Bilangan CFU/mL mula untuk berkurang pada 50 dan 100 mg/L bagi Fe manakala pada 200 mg/L, hanya beberapa koloni bertahan (pencilan AM2) disebabkan ketoksikan oleh Fe yang berkepekatan tinggi and hampir kesemua pencilan bakteria menunjukkan tiada pertumbuhan sepanjang plat. Bagi mangan, kesemua bakteria terpilih AM2, AM3 dan AM4 masih memberikan bilangan CFU/mL sehingga kepekatan 200 mg/L kecuali AM6, bakteria tidak menunjukkan pertumbuhan pada 100 dan 200 mg/L. Oleh itu, julat Fe dan Mn yang boleh diaplikasikan dalam penyesuaian bakteria ialah dari 0 hingga 200 mg/L dengan pencilan AM2 dan AM4 adalah untuk penyingkiran Fe dan Mn.

 

Kata kunci:  biojerapan, besi, mangan, sumber air minuman, ketahanan bakteria

 

References

1.       Ahluwalia, S. S. and Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98: 2243–2257.

2.       Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. (2011). Review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011: 1–31.

3.       Tsekova, K., Todorova, D., Dencheva, V. and Ganeva, S. (2010). Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresource Technology, 101(6): 1727–1731.

4.       Ileri, O., Cay, S., Uyanik, A. and Erduran, N. (2014). Removal of common heavy metals from aqueous solutions by waste Salvadora persica L. Branches (Miswak). International Journal of Environmental Research, 8(4): 987–996.

5.       Sannasi P., Kader J., Othman, O. and Salmijah, S. (2009). Physical growth and characterization of bacterial cells exposed to Cd(II), Cr(VI), Cu(II), Ni(II) and Pb(II). Journal of Environment Research and Development, 4(1): 8–18.

6.       Hasan, H. A., Abdullah, S. R. S., Kofli, N. T. and Kamarudin, S. K. (2010). Biosorption of manganese in drinking water by isolated bacteria. Journal of Applied Science, 10(21): 2653–2657.

7.       Hasan, H. A., Abdullah, S. R. S., Kofli, N. T. and Kamarudin, S. K. (2012). Isotherm equilibriums of Mn2+ biosorption in drinking water by locally isolated Bacillus species and sewage activated sludge. Journal of Environmental Management,111: 34–43.

8.       Hasan, H. A., Abdullah, S. R. S., Kofli, N. T. and Jay, Y. S. (2016). Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus. Journal of Industrial and Engineering Chemistry, 37: 295–305.

9.       Zainudin, F. M., Hasan, H. A. and Abdullah, S. R. S. (2016). Effect of initial concentrations on biosorption of manganese by locally isolated Bacillus cereus. Jurnal Kejuruteraan, 28: 73–78.

10.    Kadukova, J. and Vircikova, E. (2005). Comparison of differences between copper bioaccumulation and biosorption. Environment International, 31(2): 227–232.

11.    Nye, C. K. (2014). Phytoremediation of micropollutant through sub-surface constructed wetlands. Thesis of Bachelor Degree, Universiti Kebangsaan Malaysia.

12.    Samarth, D. P., Chandekar, C. J. and Bhadekar, R. K. (2012). Biosorption of heavy metals from aqueous solution using Bacillus licheniformis. International Journal of Pure & Applied Sciences & Technology, 10(2): 12–19.

13.    Fadel, M., Hassanein, N. M., Elshafei, M. M., Mostafa, A. H., Ahmed, M. A. and Khater, H. M. (2015). Biosorption of Manganese from Groundwater by Biomass of Saccharomyces cerevisiae. HBRC Journal, 13(1): 106–113.

14.    Sorokina, E. V., Yudina, T. P., Bubnov, I. A. and Danilov, V. S. (2013). Assesment of iron toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain. Microbiology, 82(4): 439–444.

15.    Church, M. J., Hutchins, D. A. and Ducklow, H. W. (2000). Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Applied and Environmental Microbiology, 66(2): 455–466.

16.    Gadd, G. M (1994). The Genus Aspergillus. Springer Science, Business Media, New York: 361–374.

17.    Iqbal, A., Zafar, S. and Ahmad, F. (2005). Heavy metal biosorption potential of Aspergillus and Rhizopus sp. isolated from wastewater treated soil. Journal of Applied Science and Environmental Management, 9(1): 123–126.

18.    Ghane, M., Tabandeh, F. and Bandehpour, M. (2013). Isolation and characterization of a heavy metal resistant Comamonas sp. from industrial effluents. Iranian Journal of Science and Technology, 37(2): 173–179.

19.    Malar, S., Vikram, S. S., Favas, P. J. C. and Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths (Eichhornia crassipes (Mart.)). Botanical Studies, 55(54): 1–11.

 

 

 




Previous                    Content                    Next