Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 131 - 137
DOI:
10.17576/mjas-2019-2301-16
RESISTANCE OF
NATIVE BACTERIA ISOLATED FROM ACTIVATED SLUDGE TOWARDS IRON AND MANGANESE
(Ketahanan Pencilan
Bakteria Asli daripada Enapcemar Teraktif terhadap Ferum dan Mangan)
Nuratiqah Marsidi1, Hassimi Abu Hasan1*,
Mohd Izuan Effendi Halmi2, Siti Rozaimah Sheikh Abdullah1
1Chemical Engineering Program, Research Centre for
Sustainable Process Technology (CESPRO),
Faculty of
Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Land Management, Faculty of
Agriculture,
Universiti Putra
Malaysia, 43400 Serdang, Selangor. Malaysia
*Corresponding
author: hassimi@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
A
study was conducted to observe the resistance of native isolated bacteria
towards selected heavy metals (iron; Fe and manganese; Mn) in a separate
exposure. Isolated bacteria were evaluated by culturing them in nutrient broth
medium that contained approximately 3 ×106 CFU/mL bacteria with
different initial concentrations (0, 50, 100 and 200 mg/L). Result showed that
a plate with bacterial growth indicated bacterial resistance, which was
verified based on CFU/mL. At 0 mg/L, bacteria grew well on the plate with Fe
and Mn. The bacterial number began to decrease at 50 and 100 mg/L for Fe and at
200 mg/L for Mn. Only a few colonies survived (isolate AM2) the toxicity of
high Fe amount; the isolated bacteria almost showed no growth along the plate.
AM2, AM3 and AM4 presented resistance to Mn until 200 mg/L, but not AM6. The
bacteria showed no growth at 100 and 200 mg/L. Thus, the Fe and Mn
concentrations that can be applied during acclimatisation ranged from 0 mg/L to
200 mg/L with isolated AM2 and AM4 for Fe and Mn removal.
Keywords: biosorption, drinking water resources, iron,
manganese, resistance bacteria
Abstrak
Satu kajian telah dijalankan
untuk melihat tahap ketahanan bakteria tempatan terhadap logam berat terpilih
(ferum; Fe dan mangan; Mn) dalam pendedahan berasingan. Bakteria telah diuji
dengan pengkulturan dalam medium kaldu nutrien mengandungi kira-kira 3x106
CFU/mL bakteria dengan kepekatan logam berat yang berbeza (0, 50, 100 and 200
mg/L). Sebagai keputusan, plat yang mempunyai pertumbuhan bakteria menunjukkan
bahawa bakteria merintang kepada kepekatan masing-masing dan disahkan
berasaskan unit pembentukan koloni per mL. Pada 0 mg/L, bakteria tumbuh di
sepanjang plat yang mengandungi Fe dan Mn. Bilangan CFU/mL mula untuk berkurang
pada 50 dan 100 mg/L bagi Fe manakala pada 200 mg/L, hanya beberapa koloni bertahan
(pencilan AM2) disebabkan ketoksikan oleh Fe yang berkepekatan tinggi and
hampir kesemua pencilan bakteria menunjukkan tiada pertumbuhan sepanjang plat.
Bagi mangan, kesemua bakteria terpilih AM2, AM3 dan AM4 masih memberikan
bilangan CFU/mL sehingga kepekatan 200 mg/L kecuali AM6, bakteria tidak
menunjukkan pertumbuhan pada 100 dan 200 mg/L. Oleh itu, julat Fe dan Mn yang
boleh diaplikasikan dalam penyesuaian bakteria ialah dari 0 hingga 200 mg/L
dengan pencilan AM2 dan AM4 adalah untuk penyingkiran Fe dan Mn.
Kata kunci: biojerapan, besi, mangan, sumber air minuman,
ketahanan bakteria
References
1.
Ahluwalia,
S. S. and Goyal, D. (2007). Microbial and plant derived biomass for removal of
heavy metals from wastewater. Bioresource
Technology, 98: 2243–2257.
2.
Tangahu,
B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M.
(2011). Review on heavy metals (As, Pb and Hg) uptake by plants through
phytoremediation. International Journal
of Chemical Engineering, 2011: 1–31.
3.
Tsekova,
K., Todorova, D., Dencheva, V. and Ganeva, S. (2010). Biosorption of copper(II)
and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresource Technology, 101(6): 1727–1731.
4.
Ileri,
O., Cay, S., Uyanik, A. and Erduran, N. (2014). Removal of common heavy metals
from aqueous solutions by waste Salvadora
persica L. Branches (Miswak). International
Journal of Environmental Research, 8(4): 987–996.
5.
Sannasi
P., Kader J., Othman, O. and Salmijah, S. (2009). Physical growth and
characterization of bacterial cells exposed to Cd(II), Cr(VI), Cu(II), Ni(II) and
Pb(II). Journal of Environment Research
and Development, 4(1): 8–18.
6.
Hasan,
H. A., Abdullah, S. R. S., Kofli, N. T. and Kamarudin, S. K. (2010).
Biosorption of manganese in drinking water by isolated bacteria. Journal of Applied Science, 10(21):
2653–2657.
7.
Hasan,
H. A., Abdullah, S. R. S., Kofli, N. T. and Kamarudin, S. K. (2012). Isotherm
equilibriums of Mn2+ biosorption in drinking water by locally
isolated Bacillus species and sewage
activated sludge. Journal of
Environmental Management,111:
34–43.
8.
Hasan,
H. A., Abdullah, S. R. S., Kofli, N. T. and Jay, Y. S. (2016). Interaction of
environmental factors on simultaneous biosorption of lead and manganese ions by
locally isolated Bacillus cereus. Journal of Industrial and Engineering
Chemistry, 37: 295–305.
9.
Zainudin,
F. M., Hasan, H. A. and Abdullah, S. R. S. (2016). Effect of initial
concentrations on biosorption of manganese by locally isolated Bacillus cereus. Jurnal Kejuruteraan, 28: 73–78.
10.
Kadukova,
J. and Vircikova, E. (2005). Comparison of differences between copper
bioaccumulation and biosorption. Environment
International, 31(2): 227–232.
11.
Nye,
C. K. (2014). Phytoremediation of micropollutant through sub-surface
constructed wetlands. Thesis of Bachelor Degree, Universiti Kebangsaan
Malaysia.
12.
Samarth,
D. P., Chandekar, C. J. and Bhadekar, R. K. (2012). Biosorption of heavy metals
from aqueous solution using Bacillus
licheniformis. International Journal
of Pure & Applied Sciences & Technology, 10(2): 12–19.
13.
Fadel,
M., Hassanein, N. M., Elshafei, M. M., Mostafa, A. H., Ahmed, M. A. and Khater,
H. M. (2015). Biosorption of Manganese from Groundwater by Biomass of Saccharomyces cerevisiae. HBRC Journal, 13(1): 106–113.
14.
Sorokina,
E. V., Yudina, T. P., Bubnov, I. A. and Danilov, V. S. (2013). Assesment of iron
toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain. Microbiology, 82(4): 439–444.
15.
Church,
M. J., Hutchins, D. A. and Ducklow, H. W. (2000). Limitation of bacterial
growth by dissolved organic matter and iron in the Southern Ocean. Applied and Environmental Microbiology,
66(2): 455–466.
16.
Gadd,
G. M (1994). The Genus Aspergillus. Springer Science, Business Media, New York:
361–374.
17.
Iqbal,
A., Zafar, S. and Ahmad, F. (2005). Heavy metal biosorption potential of Aspergillus and Rhizopus sp. isolated from wastewater treated soil. Journal of Applied Science and Environmental
Management, 9(1): 123–126.
18.
Ghane,
M., Tabandeh, F. and Bandehpour, M. (2013). Isolation and characterization of a
heavy metal resistant Comamonas sp.
from industrial effluents. Iranian
Journal of Science and Technology, 37(2): 173–179.
19.
Malar,
S., Vikram, S. S., Favas, P. J. C. and Perumal, V. (2014). Lead heavy metal
toxicity induced changes on growth and antioxidative enzymes level in water
hyacinths (Eichhornia crassipes
(Mart.)). Botanical Studies, 55(54): 1–11.