Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 147 - 154
DOI:
10.17576/mjas-2019-2301-18
OXYGEN REDUCTION REACTION BEHAVIOURS OF CARBON NANOTUBES
SUPPORTING Pt CATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELL
(Sifat Tindak Balas
Penurunan Oksigen bagi Tiub Nanokarbon Disokong Mangkin Pt bagi Membran
Penukaran Proton Sel Bahan Api)
Md Ahsanul Haque1,2*, Abu Bakar Sulong1,3,
Edy Herianto Majlan1, Kee Shyuan Loh1, Teuku Husaini1, Rosemilia Rosli1
1Fuel Cell Institute,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Applied Chemistry and Chemical
Engineering,
Islamic
University, Kushtia-7003, Bangladesh
3Department of Mechanical and Materials Engineering, Faculty
of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: ahsan.chem38@gmail.com
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
Sluggish
oxygen reduction reaction (ORR) in cathode electrode is the most common problem
in Proton Exchange Membrane (PEM) fuel cell systems. In this study, the ORR
behaviours of a half-cell in the cathodic part were investigated which had an
impact on its catalyst activity. The electrode was synthesized from
multi-walled carbon nanotubes (MWCNT) supported platinum (Pt) catalyst,
assigned as MWCNT/Pt, using an impregnation method. In this case, the hexachloroplatinic
acid (H2PtCl6.6H2O) acts as a Pt metal
catalyst precursor. The PTFE (polytetrafloro-ethylene) was also used as
sub-supporting material with MWCNT to produce MWCNT/PTFE composite. The Pt is
deposited onto the surface of MWCNT/PTFE composite which forms MWCNT/PTFE/Pt
electrode. Using CV and RRDE techniques, the electrochemical phenomena of
MWCNT/Pt and MWCNT/PTFE/Pt electrodes in the 0.1 M KOH electrolyte solutions
were analysed and compared. The electron transfer (n) from the K-L plot was recorded
as 3.89 and 3.77 for MWCNT/Pt and MWCNT/PTFE/Pt electrode
respectively. Based on the chronoamperometric analysis, the MWCNT/PTFE/Pt was
found to be more stable than MWCNT/Pt. Therefore, the MWCNT/PTFE/Pt electrode
may be recommended for PEM fuel cell application considering its
electrochemical activity.
Keywords: oxygen
reduction reaction, multi-walled carbon nanotube, cyclic voltammetry,
chronoamperometric analysis
Abstrak
Kelembapan tindak balas penurunan
oksigen (ORR) dalam katod elektrod adalah cabaran utama dalam sistem membran
penukar proton (PEM) sel bahan api. Dalam kajian ini, tindak balas bagi ORR
setengah-sel dikaji pada bahagian katod yang merupakan sebahagian daripada
aktiviti pemangkin. Elektrod terhasil disintesis daripada tiub nanocarbon multi
dinding (MWCNT) disokong pemangkin platinum (Pt) yang membentuk MWCNT/Pt dengan
menggunakan kaedah pengisian. Dalam kes ini, asid heksakloroplatinik (H2PtCl6.6H2O)
bertindak sebagai pemangkin logam Pt pelopor. PTFE (politetrafloro-etilena)
juga digunakan sebagai bahan sokongan tambahan dengan MWCNT untuk menghasilkan
MWCNT/PTFE komposit. Kemudian, Pt telah ditambah ke atas permukaan MWCNT/PTFE
komposit yang membawa kepada pembentukan MWCNT/PTFE/Pt elektrod. Berdasarkan
kaedah CV dan RRDE telah dianalisis dan dibandingkan fenomena elektrokimia
dengan menggunakan kandungan larutan elektrolit 0.1 M KOH bagi setiap bahan
MWCNT/Pt dan MWCNT/PTFE/Pt elektrod. Pemindahan elektron (n) dari plot K-L juga
dikira dan direkodkan sebagai 3.89 bagi MWCNT/Pt dan 3.77 bagi MWCNT/PTFE/Pt
elektrod. Berdasarkan analisis kronoamperometrik, MWCNT/PTFE/Pt adalah lebih
stabil berbanding MWCNT/Pt. Oleh itu, elektrod MWCNT/PTFE/Pt adalah disyorkan
untuk aplikasi PEM sel fuel dengan mengambilkira aktiviti elektrokimia.
Kata kunci: tindak balas penurunan oksigen, karbon nanotiub berbilang,
kitaran volmetrik, analisis kronoamperometrik
References
1.
Haque,
M. A., Sulong, A. B., Loh, K. S., Majlan, E. H., Husaini, T. and Rosli, R. E.
(2017). Acid doped polybenzimidazoles based membrane electrode assembly for
high temperature proton exchange membrane fuel cell: A review. International Journal of Hydrogen Energy,
42(14): 9156-9179.
2.
Paulus,
U. A., Wokaun, A., Scherer, G. G., Schmidt, T. J., Stamenkovic, V., Radmilovic,
V., Markovic, M. and Ross, P. N. (2002). Oxygen reduction on carbon-supported
Pt− Ni and Pt− Co alloy catalysts. The
Journal of Physical Chemistry B, 106(16): 4181-4191.
3.
Kangasniemi,
K. H., Condit, D. A. and Jarvi, T. D. (2004). Characterization of vulcan
electrochemically oxidized under simulated PEM fuel cell conditions. Journal of The Electrochemical Society,
151(4): E125-E132.
4.
Inaba,
M. (2009). Durability of electrocatalysts in polymer electrolyte fuel cells. ECS Transactions, 25(1): 573-581.
5.
Li,
Q., Aili, D., Hjuler, H. A. and Jensen, J. O. (2016). High temperature polymer
electrolyte membrane fuel cells. Springer, Switzerland.
6.
Li,
W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Gongquan, S. and Xin, Q.
(2002). Carbon nanotubes as support for cathode catalyst of a direct methanol
fuel cell. Carbon, 40(5): 787-790.
7.
Wang,
C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C. and Yan, Y. (2004). Proton
exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters, 4(2): 345-348.
8.
Wang,
X., Li, W., Chen, Z., Waje, M. and Yan, Y. (2006). Durability investigation of
carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 158(1):
154-159.
9.
Kinoshita,
K. (1992). Electrochemical oxygen technology. John Wiley & Sons.
10.
Kordesch,
K. and Simader, G. (1996). Fuel cells and their applications. Weinheim: VCh.
11.
Bernardi,
D. M. and Verbrugge, M. W. (1992). A mathematical model of the
solid‐polymer‐electrolyte fuel cell. Journal
of the Electrochemical Society, 139(9): 2477-2491.
12.
Toda,
T., Igarashi, H., Uchida, H. and Watanabe, M. (1999). Enhancement of the
electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. Journal of the Electrochemical Society,
146(10): 3750-3756.
13.
Hiesgen,
R., Eberhardt, D., Aleksandrova, E. and Friedrich, K. A. (2006). Structure and
local reactivity of supported catalyst/Nafion® layers studied by in‐situ STM. Fuel Cells, 6(6): 425-431.
14.
Ralph,
T. R. and Hogarth, M. P. (2002). Catalysis for low temperature fuel cells. Platinum Metals Review, 46(3): 117-135.
15.
Yu,
X., & Ye, S. (2007). Recent advances in activity and durability enhancement
of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic
interaction between Pt and carbon support, and activity enhancement of Pt/C
catalyst. Journal of Power Sources,
172(1): 133-144.
16.
Zhang,
S., Yuan, X. Z., Hin, J. N. C., Wang, H., Friedrich, K. A. and Schulze, M. (2009).
A review of platinum-based catalyst layer degradation in proton exchange
membrane fuel cells. Journal of Power
Sources, 194(2): 588-600.
17.
Silva,
R. A., Hashimoto, T., Thompson, G. E. and Rangel, C. M. (2012).
Characterization of MEA degradation for an open air cathode PEM fuel cell. International Journal of Hydrogen Energy,
37(8): 7299-7308.
18.
Scheibe,
B., Borowiak-Palen, E. and Kalenczuk, R. J. (2010). Oxidation and reduction of
multiwalled carbon nanotubes—preparation and characterization. Materials Characterization, 61(2):
185-191.
19.
Berber,
M. R., Hafez, I. H., Fujigaya, T. and Nakashima, N. (2015). A highly durable
fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Scientific Reports, 5: 16711.
20.
Okamoto,
M., Fujigaya, T. and Nakashima, N. (2009). Design of an assembly of poly
(benzimidazole), carbon nanotubes, and pt nanoparticles for a fuel‐cell
electrocatalyst with an ideal interfacial nanostructure. Small, 5(6): 735-740.
21.
Toh,
S. Y., Loh, K. S., Kamarudin, S. K. and Daud, W. R. W. (2016). The impact of
electrochemical reduction potentials on the electrocatalytic activity of
graphene oxide toward the oxygen reduction reaction in an alkaline medium. Electrochimica Acta, 199: 194-203.
22.
Soo,
L. T., Loh, K. S., Mohamad, A. B., Daud, W. R. W. and Wong, W. Y. (2016).
Effect of nitrogen precursors on the electrochemical performance of
nitrogen-doped reduced graphene oxide towards oxygen reduction reaction. Journal of Alloys and Compounds, 677:
112-120.
23.
Wong,
W. Y., Daud, W. R. W., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan,
E. H. (2013). Recent progress in nitrogen-doped carbon and its composites as
electrocatalysts for fuel cell applications. International Journal of Hydrogen Energy, 38(22): 9370-9386.
24.
Allen,
J. B., Parsons, R. and Jordan, J. (1985). Standard potentials in aqueous
solution. Monographs in Electroanalytical
Chemistry and Electrochemistry, Dekker Marcel, Inc., New York–Basel.
25.
Maldonado,
S. and Stevenson, K. J. (2005). Influence of nitrogen doping on oxygen
reduction electrocatalysis at carbon nanofiber electrodes. The Journal of Physical Chemistry B, 109(10): 4707-4716.
26.
Abdullah,
M., Kamarudin, S. K. and Shyuan, L. K. (2016). TiO2 nanotube-carbon (TNT-C)
as support for Pt-based catalyst for high methanol oxidation reaction in direct
methanol fuel cell. Nanoscale Research
Letters, 11(1): 553.