Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 155 - 169
DOI:
10.17576/mjas-2019-2301-19
EFFECT
OF PULSED LASER ABLATION IN WATER ON THE CORROSION BEHAVIOUR AND SURFACE
HARDNESS OF STAINLESS STEELS
(Kesan Ablasi Laser Gentian Denyut dalam Air terhadap
Kakisan dan Kekerasan Permukaan Keluli Kalis Karat)
Sze Ney Chan1, Wai Yin Wong2*,
Walvekar Rashmi1, Abdul Amir Hassan Kadhum2,3,Mohammad
Khalid4, Kean Long Lim2
1School of Engineering,
Taylor’s University Lakeside
Campus, Jalan Taylor’s, Subang Jaya, 47500, Selangor, Malaysia
2Fuel Cell
Institute
3Department of
Chemical and Process Engineering, Faculty of Engineering and Built Environment
Universiti
Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Graphene & Advanced 2D Materials Research Group
(GAMRG),
Sunway
University, No. 5,
Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
*Corresponding
author: waiyin.wong@ukm.edu.my, RashmiGangasa.Walvekar@taylors.edu.my
Received:
13 April 2017; Accepted: 17 April 2018
Abstract
This
work presents the use of pulsed fibre laser ablation in water (PLAW) to study
the corrosion behaviour and surface hardness of stainless steels. A
stainless-steel plate was ablated with a pulsed ytterbrium-doped fibre laser at
a power of 4.2 W. The laser-ablated sample was subjected to corrosion testing
using electrochemical impedance spectroscopy and potentiodynamic polarisation.
The results correlated with surface morphology, X-ray diffraction profiles and
Vicker’s hardness values. PLAW can enhance the corrosion resistance of
stainless steels in both neutral and acidic electrolytes. The corrosion
potential of the laser-treated samples was more positive at −126 and −423 mV
compared with that of the as-received samples at −209 and −439 mV in neutral
and acidic electrolytes, respectively. The inhibition efficiencies of the
laser-treated samples in neutral and acidic electrolytes were 98% and 52%,
respectively. An improvement in the surface microhardness at a maximum of 8.7%
was reported on the fibre laser-ablated stainless steels, thereby demonstrating
the efficiency of fibre-laser-assisted PLAW in inhibiting corrosion and
improving the hardness of stainless steel.
Keywords: stainless steel, corrosion inhibition, fibre
laser, pulse laser ablation in water
Abstrak
Kajian ini bertujuan untuk
mengkaji kesan penggunaan teknik ablasi laser gentian denyut dalam air terhadap
kakisan dan kekerasan permukaan keluli kalis karat. Dalam kajian ini, plat
keluli kalis karat telah diablasi dengan laser gentian denyutan terdop
ytterbrium pada kuasa 4.2 W. Seterusnya, plat sampel ini dikaji terhadap
kakisan dengan teknik spektroskopi impedans elektrokimia dan polarisasi
potentiodinamik. Kajian terhadap morfologi permukaan, profil sinar-X dan
kekerasan Viker juga dilakukan. Kajian menunjukkan bahawa teknik ini dapat
mempertingkatkan rintangan kakisan keluli kalis karat dalam elektrolit neutral
dan asid. Potensi kakisan yang lebih positif diperolehi pada sampel terablasi
laser gentian, iaitu pada -126 mV dan -423 mV berbanding dengan sampel kawalan
(-209 mV dan -439 mV), masing-masing dalam elektrolit neutral dan asid.
Kecekapan perencatan kakisan pada sampel terablasi adalah 98% dalam elektrolit
neutral dan 24% dalam elektrolit asid. Sebanyak 8.7% pembaikan dari segi
kekerasan mikro pada permukaan sampel terablasi dicapai. Hasil kajian ini
berjaya menunjukkan kelebihan penggunaan laser gentian dalam proses ablasi
keluli kalis karat dalam meningkatkan ketahanan kakisan dan kekerasan
permukaan.
Kata
kunci: keluli kalis karat, kecekapan perencatan kakisan, laser gentian, ablasi
laser denyut dalam air
References
1.
Figueira,
R., Silva, C. J. and Pereira, E. (2015). Organic–inorganic hybrid sol–gel
coatings for metal corrosion protection: A review of recent progress. Journal
of Coatings Technology and Research, 12(1): 1-35.
2.
Chen,
X., Li, X., Du, C. and Cheng, Y. (2009). Effect of cathodic protection on
corrosion of pipeline steel under disbonded coating. Corrosion Science,
51(9): 2242-2245.
3.
Musa,
A. Y., Kadhum, A. A. H., Mohamad, A. B., Daud, A. R., Takriff, M. S.,
Kamarudin, S. K., and Muhamad, N. (2009). Stability of layer forming for
corrosion inhibitor on mild steel surface under hydrodynamic conditions. International
Journal Electrochemical Science, 4: 707-716.
4.
Aparicio,
M., Jitianu, A., Rodriguez, G. Degnah, A., Al-Marzoki, K., Mosa, J. and Klein,
L.C. (2016). Corrosion protection of AISI 304 stainless steel with melting gel
coatings. Electrochimica Acta, 202: 325-332.
5.
Chong,
P. H., Liu, Z., Wang, X. Y. and Skeldon, P. (2004). Pitting corrosion behaviour
of large area laser surface treated 304L stainless–steel. Thin Solid Films,
453-454: 388-393.
6.
Khalfaoui,
W., Valerio, E., Masse, J. E. and Autric, M. (2010). Excimer laser treatment of
ZE41 magnesium alloy for corrosion resistance and microhardness improvement. Optics
and Lasers in Engineering, 48(9): 926-931.
7.
Sun,
G., Zhang, Y., Zhang, M., Zhou, R., Wang, K., Liu, C. and Luo, K. (2014).
Microstructure and corrosion characteristics of 304 stainless steel
laser-alloyed with Cr–CrB2. Applied Surface Science, 295: 94-107.
8.
Yue,
T. M., Yu, J. K., Mei, Z. and Man, H. C. (2002). Excimer laser surface
treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Materials
Letters, 52(3): 206-212.
9.
Boutinguiza,
M., del Val, J., Riveiro, A., Lusquiños, F., Quintero, F., Comesaña, R. and
Pou, J. (2013). Synthesis of titanium oxide nanoparticles by ytterbium fiber
laser ablation. Physics Procedia, 41: 787-793.
10.
Pacquentin,
W., Caron, N. and Oltra, R. (2015). Effect of microstructure and chemical
composition on localized corrosion resistance of a AISI 304L stainless steel
after nanopulsed-laser surface melting. Applied Surface Science, 356:
561-573.
11.
Lawrence,
S. K., Adams, D. P., Bahr, D. F. and Moody, N. R. (2016). Environmental
resistance of oxide tags fabricated on 304L stainless steel via nanosecond
pulsed laser irradiation. Surface and Coatings Technology, 285:
87-97.
12.
Ren,
Y., Luo, Y., Zhang, K., Zhu, G. and Tan, X. 2008. Lignin terpolymer for
corrosion inhibition of mild steel in 10% hydrochloric acid medium. Corrosion
Science, 50: 3147-3153.
13.
ASTM
E92 Standard Test Method for Vickers Hardness of Metallic Materials. (2015).
Access from http://www.wmtr.com/en.astme92.html.
14.
El
Maghraby, A. A. (2009). Corrosion inhibition of aluminum in hydrochloric acid
solution using Potassium Iodate Inhibitor. The Open Corrosion Journal, 2:189-196.
15.
Wang,
Q.-Y., Wang, X.-Z., Luo, H. and Luo, J.-L. (2016). A study on corrosion
behaviors of Ni–Cr–Mo laser coating, 316 stainless steel and X70 steel in
simulated solutions with H2S and CO2. Surface and Coatings
Technology, 291: 250-257.
16.
Wang,
X.-T., Wei, Q.-Y., Zhang, L., Sun, H.-F., Li, H. and Zhang, Q.-X. (2016).
CdTe/TiO2 nanocomposite material for photogenerated cathodic
protection of 304 stainless steel. Materials Science and Engineering: B,
208: 22-28.
17.
Musa,
A. Y., Kadhum, A. A. H., Mohamad, A. B., Rahoma, A. A. B. and Mesmari, H.
(2010). Electrochemical and quantum chemical calculations on
4,4-dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in
hydrochloric acid. Journal of Molecular Structure, 969(1-3): 233-237.
18.
Hanza,
A. P., Naderi, R., Kowsari, E. and Sayebani, M. (2016). Corrosion behavior of
mild steel in H2SO4 solution with 1, 4-di [1′-methylene-3′-methyl imidazolium
bromide]-benzene as an ionic liquid. Corrosion Science, 107:
96-106.
19.
Behpour,
M., Ghoreishi, S., Kashani, M. K. and Soltani, N. (2009). Inhibition of 304
stainless steel corrosion in acidic solution by Ferula gumosa (galbanum) extract. Materials and Corrosion,
60(11): 895-898.
20.
Shadangi,
Y., Chattopadhyay, K., Rai, S. B. and Singh, V. (2015). Effect of LASER shock
peening on microstructure, mechanical properties and corrosion behavior of
interstitial free steel. Surface and Coatings Technology, 280:
216-224.
21.
Lu,
J. Z., Qi, H., Luo, K. Y., Luo, M. and Cheng, X. N. (2014). Corrosion behaviour
of AISI 304 stainless steel subjected to massive laser shock peening impacts
with different pulse energies. Corrosion Science, 80: 53-59.
22.
Ait
Albrimi, Y., Ait Addi, A., Douch, J., Souto, R. M. and Hamdani, M. (2015).
Inhibition of the pitting corrosion of 304 stainless steel in 0.5M hydrochloric
acid solution by heptamolybdate ions. Corrosion Science, 90:
522-528.
23.
Song,
B., Dong, S., Liu, Q., Liao, H. and Coddet, C. (2014). Vacuum heat treatment of
iron parts produced by selective laser melting: Microstructure, residual stress
and tensile behavior. Materials & Design (1980-2015), 54: 727-733.
24.
Cui,
C., Hu, J., Liu, Y., Gao, K. and Guo, Z. (2008). Morphological and structural
characterizations of different oxides formed on the stainless steel by Nd:YAG
pulsed laser irradiation. Applied Surface Science, 254(20): 6537-6542.
25.
Cui,
C., Hu, J., Liu, Y. and Guo, Z. (2008). Microstructure evolution on the surface
of stainless steel by Nd:YAG pulsed laser irradiation. Applied Surface
Science, 254(11): 3442-3448.
26.
Llewellyn,
D. and Hudd, R. (1998). Steels:
metallurgy and applications: Butterworth-Heinemann.ASTM E92 Standard
Test Method for Vickers Hardness of Metallic Materials. (2015). Access from http://www.wmtr.com/ en.astme92.html.
27.
Li,
D., Feng, Y., Bai, Z., Zhu, J. and Zheng, M. (2007). Influence of temperature,
chloride ions and chromium element on the electronic property of passive film
formed on carbon steel in bicarbonate/carbonate buffer solution. Electrochimica
Acta, 52(28): 7877-7884.
28.
Marcuci,
J. R. J., Souza, E. C. d., Camilo, C. C., Di Lorenzo, P. L. and Rollo, J. M. D.
d. A. (2014). Corrosion and microstructural characterization of martensitic
stainless steels submitted to industrial thermal processes for use in surgical
tools. Revista Brasileira de Engenharia Biomédica, 30: 257-264.