Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 170 - 181
DOI:
10.17576/mjas-2019-2301-20
EFFECT OF Cu-PUROLITE A400 RESIN ON ADSORPTION OF
NITRATE AND NITRITE IN WASTEWATER TREATMENT
(Kesan Resin Purolit
A400-Cu Terhadap Penjerapan Nitrat dan Nitrit dalam Rawatan Air Sisa)
Fatimah Batubara1, Chairani Selviani1,
Muhammad Turmuzi1, Edy Herianto Majlan2,3*
1Chemical Engineering Department, Faculty of
Engineering,
Universitas
Sumatera Utara, Medan, 20155 Sumatera Utara, Indonesia
2Fuel Cell Institute,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Environmental Engineering Department,
Faculty of
Environmental Engineering,
Institut
Teknologi Yogyakarta, D.I Yogyakarta, 55171, Indonesia
*Corresponding
author: edyhm71@gmail.com
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
The
exceedance of nitrate and nitrite concentrations over the water standard
quality has caused potential human health dangers such as blue baby syndrome
and the growth of aquatic plants (eutrophication). In this work, a Purolite
A400 anion exchange resin impregnated by Cu (Purolite A400-Cu) is used to
remove nitrate and nitrite in wastewater. High saturation capacities of 0.76 mg
N/g and 0.88 mg N/g-nitrate and 0.10 mg N/g and 0.11 mg N/g-nitrite are
obtained from Purolite A400 and Purolite A400-Cu. Scanning electron microscope
measurement shows that the surface of Purolite A400-Cu is rough due to other
deposited materials that originate from Cu deposition. Energy dispersive
spectroscopy measurement indicates that the increase in adsorption is due to Cu
impregnation with the addition of a positive surface charge on the resin by Cu.
The adsorption capacities of nitrate and nitrite decrease with increases in
sulphate, phosphate and chloride concentrations. Data are obtained from a
fixed-bed column using the Thomas equation model. The breakthrough curve shows
the Ct/C0 ratio values in Purolite A400 and Purolite
A400-Cu. Large Ct/C0 values of 0.55 and 0.52-nitrate and
0.48 and 0.03-nitrite are obtained from Purolite A400 and Purolite A400-Cu.
Keywords: nitrite adsorption, nitrate adsorption,
Purolite A400 resin, wastewater treatment, Cu impregnation
Abstrak
Kepekatan nitrat dan nitrit
yang melebihi piawaian kualiti air akan berpotensi membahayakan kesihatan
manusia, sindrom biru-bayi dan pertumbuhan tumbuhan akuatik (eutrofikasi).
Purolit A400 resin pertukaran anion yang impregnasi Cu (Purolite-Cu) digunakan
untuk mengurangkan kandungan nitrat dan nitrit dalam air sisa. Kapasiti
ketepuan tertinggi diperolehi pada Purolit dan Purolit-Cu masing-masing 0.76 mg
N/g; 0.88 mg N/g-nitrat dan 0.10 mg N/g; 0.11 mg N/g-nitrit. Pengukuran dengan
menggunakan spektrometri serakan tenaga (EDS) membuktikan bahawa peningkatan
penjerapan adalah disebabkan oleh impregnasi Cu dengan penambahan caj permukaan
positif pada resin oleh logam Cu. Kapasiti penjerapan nitrat dan nitrit menurun
apabila kepekatan sulfat, fosfat dan klorida bertambah. Data diperolehi
daripada turus lapisan penjerap tetap menggunakan model persamaan Thomas.
Lengkung bulus menunjukkan nilai nisbah Ct/C0 dalam
Purolit dan Purolit-Cu. Nilai Ct/C0 terbesar diperoleh pada Purolit
dan Purolit-Cu masing-masing 0.55 & 0.52-nitrat dan 0.48 & 0.03-nitrit.
Kata kunci: penjerapan nitrit, penjerapan nitrat, resin Purolit A400,
rawatan air sisa, impregnasi Cu
References
1.
Rajeswari,
M., Rajakumar, S. and Ayyasamy, P. M. (2015). Evaluation of nitrate removal in
aquatic system: A general view. International Journal of Emerging Research
in Management & Technology, 9359 (12): 186 – 194.
2.
Hanafi,
H. A. and Azeema, S. M. A. (2016). Removal of nitrate and nitrite anions from
wastewater using activated carbon derived from rice straw. Journal of Environmental
& Analytical Toxicology, 6 (1): 1-6.
3.
Chatterjee,
S., Lee, D. S., Lee, M. W. and Woo, S. H. (2008). Nitrate removal from aqueous
solutions by cross-linked chitosan beads conditioned with sodium bisulfate. Journal of Hazardous Materials, 166: 508
– 513.
4.
Madaeni,
S. S. and Koocheki, S. (2010). Influence of di-hydrogen phospate ion on
performance of polyamide reverse osmosis membrane for nitrate and nitrite
removal. Journal Porous Material, 17:
163 – 168.
5.
Hekmatzadeh,
A. A., Karimi-Jashani, A., Talebbeydokhti, N. and Klove, B. (2012). Modeling of
nitrate removal for ion exchange resin in batch and fixed-bed experiments. Desalination, 284: 22 – 31.
6.
Guy,
K. A., Xu, H., Yang, J. C., Werth, C. J. and Shapley, J. R. (2009). Catalytic
nitrate and nitrite reduction with Pd - Cu/PVP colloids in water: composition,
structure, and reactivity correlations. Journal
Physical Chemistry, 113, 8177 – 8185.
7.
Bel,
E. S., Hmida, H., Ouejhani, A., Lalleve, G., Fauvarque, J. F. and Dachraoui, M.
(2013). A novel anionic electrodialysis membrane can be used to remove nitrate
and nitrite from wastewater. Desalination
and Water Treatment 23: 13 –19.
8.
Khan,
M. A., Ahn, Y. T., Kumar, M., Lee, W., Min, B., Kim, G., Cho, D. W., Park, W.
B. and Jeon, B. H. (2011). Adsorption studies for the removal of nitrate using
modified lignite granular activated carbon. Separation
Science and Technology, 46: 2575 – 2584.
9.
Sabzali,
A., Gholami, M., Yazandbakhsh, A. R., Khodadadi, A., Musavi, B. and Mirzaee, R. (2006). Chemical denitrification
of nitrate from groundwater via sulfamic acid and zinc metal. Journal Environmental Health Science
Engineering, 3(3): 141 – 146.
10.
Lopez-Vazquez,
C. M., Kubare, M., Saroj, D. P., Chikamba, C., Schwarz, J., Daims, H. and
Brdjanovic, D. (2013). Thermophilic biological nitrogen removal in industrial
wastewater treatment. Applied Microbiology
Biotechnology, 98(2): 945 – 956.
11.
Matos,
C. T., Velizarov, S., Crespo, J. G. and Reis, M. A. M. (2006). Simultaneous
removal of perchlorate and nitrate from drinking water using the ion exchange
membrane bioreactor concept. Water
Research, 40(2): 231 – 240.
12.
Zhang,
Y. and Angelidaki, I. (2012). Bioelectrode-based approach for enhancing nitrate
and nitrite removal and electricity generation from eutrophic lakes. Water Research, 46(19): 6445-6453.
13.
Hannachi,
C., Guesmi, F., Fatma, K., Missaoui and Hamrouni, B. (2014). Application of
adsorption models for fluoride, nitrate and sulfate ion removal by AMX membrane. International Journal of Technology,
5(1): 60 – 69.
14.
Sowmya,
A and Meenakshi, S. (2013). An efficient and regenerable quartenary amine
modified chitosan beads for the removal of nitrate and phosphate anions. Journal of Environmental Chemical
Engineering, 1(4): 906-915.
15.
Shaikh,
I. I. and Chendake, Y. J. (2016). Removal of ammonium nitrate from aquaculture
by sorption using zeolite. International Journal of Scientific Research
in Chemistry, 1(1): 42 – 48.
16.
Hassan,
M. L., Kassem, N. F and El-Kader, H. A. A. (2010). Novel Zr (IV)/sugar beet
pulp composite for removal of sulfate and nitrate anion. Journal of Applied Polymer Science, 117(4): 2205 – 2212.
17.
Kalaruban,
M., Loganathan, P., Shim, W. G., Kandasamy, J., Naidu, G., Tien, V. N. and
Vigneswaran, S. (2016). Removing nitrate from water using iron-modified Dowex
21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies. Separation and Purification Technology, 158:
62 – 70.
18.
Bulgariu,
L., Ceica, A., Lazar, L., Cretescu, I. and Balasanian, I. (2010). Equilibrium
and kinetics study of nitrate removal from water by Purolite A100 resin. Revista de Chimie, 61(11): 1136 – 1141.
19.
Nur,
T., Shim, W. G., Loganathan, P., Vigneswaran S. and Kandasamy, J. (2014).
Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed
column adsorption modelling. International
Journal of Environmental Science and Technology, 12(4): 1311 – 1320.
20.
Primo,
O., Rivero, M. J., Urtiaga, A. M. and Ortiz, I. (2009). Nitrate removal from
electro-oxidized landfill leachate by ion exchange. Journal of Hazardous
Materials, 164(1): 389 – 393.
21.
Li,
W. B., Song, Y. B., Xu, H. K., Chen, L. Y., Dai, W. D. and Dong, M. (2015).
Ion-exchange method in the collection of nitrate from freshwater ecosystem for
nitrogen and oxygen isotope analysis: A review. Environmental Science Pollution Research, 22(13): 9575 – 9588.
22.
Farajpourlar,
M., Rao, S. R. M. and Rao, V. V. B. (2013). Studies on fixed and fluidized bed
ion exchange column to treat wastewater. IOSR Journal of Environmental Science, Toxicology and Food Technology, 6(1):
1 – 6.
23.
Li,
H. and Yang, C. (2015). Nitrite removal using ion exchange resin: Batch vs.
fixed bed performance. Separation Science
and Technology, 50(11): 1721 – 1730.
24.
Loganathan,
P., Vigneswaran, S. and Kandasamy, J. (2013). Enhanced removal of nitrate from
water using surface modification of adsorbents - A review. Journal of Environmental Management, 131: 363 – 374.
25.
Swarna,
A. (2014). Removal of arsenic using iron coated limestone. Master Theses &
Specialist Projects. Western Kentucky University.
26.
Zou,
W., Han, R., Chen, Z., Jinghua, Z. and Shi, J. (2006). Kinetic study of
adsorption of Cu(II) and Pb (II) from aqueous solutions using manganese oxide
coated zeolite in batch mode. Colloids
and Surfaces A: Physicochemistry Engineering Aspects, 279: 238 – 246.
27.
Purolite
(2017). Technical data ISO 9002. http://www.purolite.com.
[Access online 7 September 2017].
28.
Faiku,
F and Haziri, A. (2016). Assesment of the water quality of Lumbardhi River,
Prizren (Kosovo). Bulgarian Chemical
Communications, 48(4): 646 – 658.
29.
Zhang,
J., Yang, C., Chen, C. and Yang, X. (2013). Determination of nitrite and
glucose in water and human urine with light-up chromogenic response based on
the expeditious oxidation of 3,3’,5,5’-tetramethylbenzidine by peroxynitrous
acid. Analyst, 138(8): 2398 – 2404.
30.
Roohparvar,
R., Shamspur, T. and Mostafavi, A. (2016). Application of modified silica
coated magnetite nanoparticles to separation-preconcentration and determination
of nitrite. Chemical & Metallurgical Engineering Journal, 4: 101 – 103.
31.
Xu,
X., Gao, B., Yue, Q., Li, Q. and Wang, Y. (2013). Nitrate adsorption by
multiple biomaterial based resins: Application of pilot-scale and lab-scale
products. Chemical Engineering Journal,
234: 397 – 405.
32.
Chowdhury,
Z. Z., Zain, S. M., Rashid, A. K., Rafique, R. F. and Khalid, K. (2013).
Breakthrough curve analysis for column dynamics sorption of Mn(II) ions from
wastewater by using Mangostana garcinia
peel-based granular-activated carbon.
Journal of Chemistry, 2013: 1 – 8.
33.
Babu,
B. V. and Gupta, S. (2005). Modeling and simulation for dynamics of packed bed
adsorption. Proceedings of International
Symposium & 57th Annual Session of IIChE in association with
AIChE (CHEMCON-2004), Mumbai.