Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 23 - 30
DOI:
10.17576/mjas-2019-2301-03
WATER
EXTRACT OF ONION PEEL ASH: AN EFFICIENT GREEN CATALYTIC SYSTEM FOR THE SYNTHESIS
OF ISOINDOLINE-1,3-DIONE DERIVATIVES
(Air Abu Kulit Bawang: Sistem Pemangkin Katalitik Hijau yang
Effisien dalam Sintesis Terbitan Isoindolina-1,3-dion)
Poh Wai Chia1,2*,
Poh Seng Chee1, Mohd Haziq Aziz1, Siti Aisha Mohd
Radzi2, Fu Siong Julius Yong2, Su-Yin Kan3
1School of Marine and Environmental Sciences
2Institute of Marine Biotechnology
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Faculty of Health Sciences,
Universiti
Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
*Corresponding
author: pohwai@umt.edu.my
Received: 2
July 2018; Accepted: 27 November 2018
Abstract
Isoindoline-1,3-dione derivatives are
important organic compounds associated with various interesting applications such
as in the fields of material science, medicine, important building blocks and
so on. Traditionally, the synthesis of isoindoline-1,3-dione derivatives are
achieved using harmful and toxic catalysts, such as concentrated sulphuric acid,
triphenylphosphine, ionic liquid [bmim][BF4] or
phthalimide-N-sulfonic acid. Thus, the development of a greener catalytic
system for the synthesis of isoindoline-1,3-dione derivatives is highly sought
after. In this work, an efficient synthesis of isoindoline-1,3-dione
derivatives using the Water Extract of Onion Peel Ash (WEOPA) method is
described. The new approach provides several advantages including the non-usage
of external acids, recyclable catalytic system, cheap and the yield of the
synthesized products were obtained in moderate to good yields by reacting various
anilines with phthalic anhydride. The current improved method is scientifically
important, due to it avoid the use of environmental harmful reagents and at the
same time provides an alternative method for bio-waste management.
Keywords: water extract of onion peel ash, isoindoline-1,3-dione,
recyclable catalytic system, anilines, phthalic anhydride
Abstrak
Terbitan
isoindolina-1,3-dion adalah sebatian organik yang penting dan dikaitkan dengan
pelbagai aplikasi yang menarik, seperti dalam bidang sains bahan, perubatan,
blok bangunan penting dan sebagainya. Secara tradisinya, sintesis derivatif
isoindolina-1,3-dion dicapai dengan menggunakan pemangkin berbahaya dan
beracun, seperti asid sulfurik pekat, trifenilfosfin, cecair ionik [bmim] [BF4]
atau asid fitalimid-N-sulfonik. Oleh itu, pembangunan sistem pemangkin yang
lebih hijau untuk sintesis derivatif isoindolina-1,3-dion sangat diperlukan.
Dalam kerja ini, satu kaedah effisien dalam sintesis terbitan
isoindolina-1,3-dion dengan menggunakan ekstrak air abu bawang dibincangkan
disini. Kaedah baru ini memberikan pelbagai manfaat termasuk bebas daripada penggunaan
asid luaran, sistem pemangkin kitar semula, murah dan hasil bagi produk sintesis
yang didapati adalah sederhana hingga baik melalui tindak balas antara anilin-anilin
dengan fitalik anhidrit. Kaedah yang ditambahbaik ini
adalah penting secara saintifik, kerana ia mengelakkan penggunaan reagen
berbahaya kepada alam sekitar dan pada masa yang sama menyediakan kaedah
alternatif untuk pengurusan bio-sisa.
Kata kunci: ekstrak air abu bawang merah, isoindolina-1,3-dion, system
pemangkin kitar semula, anilin, fitalik anhidrit
References
1.
Chassaing, S. and Beneteau, V. (2017). Zeolite as
green catalysts for organic synthesis: The cases of H-, Cu-& Sc-zeolites. Current Organic Chemistry, 21(9): 779-793.
2.
Andersen, J. and Mack, J. (2018). Mechanochemistry and
organic synthesis:from mystical to practical. Green Chemistry, 20(7): 1435-1443.
3.
Kan, S.-Y., Yiong, W. S., Yong, F. S. J. and Chia, P.W. (2017).
Synthesis of benzothiazole derivatives using ultrasound probe irradiation. Malaysian Journal of Analytical Sciences,
21(6): 1219-1225.
4.
Asseri, S. N. A. R. M., Tan, S. H., Mohamad, W. N. K. W.,
Poh, S. C., Chia, P. W., Kan, S.-Y. and Chuah, T. S. (2017). MgCl2
as efficient and inexpensive catalyst for the synthesis of 1,4-dihydropyridine
derivatives. Malaysian Journal of
Analytical Sciences, 21(1): 13-19.
5.
Waseem, M. A., Srivasta, A., Srivasta, A. and Siddiqui, I.
(2015). Water and ionic liquid synergy. A novel approach for the synthesis of
benzothiazole-2 (3H)-one. Journal of Saudi Chemical Society, 35(1):
68-82.
6.
Li, C.-J. and Chen, L. (2006). Organic chemistry in water. Chemical Society Review, 35(1): 68-82.
7.
Kucherenjo, A., Kostenko, A., Zhdankina, G. M., Kuznetsova,
O. Y. and Zlotin, S. G. (2018). Green asymmetric
synthesis of Warfarin and Coumachlor in pure water catalyzed by
quinoline-derived 1,2-diamines. Green
Chemistry, 20(3): 754-759.
8.
Han, M. Y., Lin, J., Li, W., Luan, W. Y., Mai, P. L. and
Zhang, Y. (2018). Catalyst-free nucleophilic addition reactions of silyl
glyoxylates in water. Green Chemistry,
20(6): 1228-1232.
9.
Noshiranzadeh, N., Emami, M., Bikas, R. and Kozakiewicz, A.
(2017). Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the
presence of a Cu (II)–azide catalyst: a new function for Cu (II)–azide
complexes. New Journal of Chemistry, 41(7): 2658-2667.
10.
Banerjee, B. (2017). Recent developments on ultrasound
assisted catalyst-free organic synthesis. Ultrasonics
Sonochemistry, 35: 1-14.
11.
Miklós, F. and Fülöp, F. (2016). A simple green protocol for
the condensation of anthranilic hydrazide with cyclohexanone and n‐benzylpiperidinone in
water. Jornal of Heterocyclic Chemistry,
53(1): 32-37.
12.
Sarmah, M., Mondal, M. and Bora, U. (2017). Agro‐waste extract based
solvents: emergence of novel green solvent for the design of sustainable
processes in catalysis and organic chemistry. ChemistrySelect, 2(18):
5180-5188.
13.
Boruah, R. P., Abdul, A. A.,
Mitali, C., Bishwajit, S. and
Diganta, S. (2015). Pd(OAc)2 in WERSA: A novel green
catalytic system for Suzuki–Miyaura cross-coupling reactions at room
temperature. Chemical Communications,
51(57): 11489-11492.
14.
Saikia, B., Boruah, P. R., Ali, A. A. and Sarma, D. (2015).
‘On-water’organic synthesis: a green, highly efficient, low cost and reusable
catalyst system for biaryl synthesis under aerobic conditions at room
temperature. RSC Advances, 5(63):
50655-50659.
15.
Dewan, A., Sarmah, M., Bora, U. and Thakur, A. J. (2016). A
green protocol for ligand, copper and base free Sonogashira cross-coupling
reaction. Tetrahedron Letters, 57(33):
3760-3763.
16.
Surneni, N., Barua, N. C. and Saikia, B. (2016). Application
of natural feedstock extract: The Henry reaction. Tetrahedron Letters, 57(25):
2814-2817.
17.
Saikia, B. and Borah, P. (2015). A new avenue to the Dakin
reaction in H2O2–WERSA. RSC Advances, 5(128):
105583-105586.
18.
Choi, I. S., Cho, E. J., Moon, J.-H. and Bae, H.-J. (2015).
Onion skin waste as a valorization resource for the by-products quercetin and
biosugar. Food Chemistry, 188: 537-542.
19.
Marshall, R. E. and Farahbakhsh, K. (2013). Systems
approaches to integrated solid waste management in developing countries. Waste Management, 33(4): 988-1003.
20.
Nile, S. H. and Park, S. W. (2013). Total phenolics,
antioxidant and xanthine oxidase inhibitory activity of three colored onions (Allium cepa L.). Frontier in Life Science, 7(3-4): 224-228.
21.
Sharma, K., Mahato, N., Nile, S. H., Lee, E. T. and Lee, Y.
R. (2016). Economical and environmentally-friendly approaches for usage of
onion (Allium cepa L.) waste. Food
Function, 7(8): 3354-3369.
22.
Gao, S., Li, L., Geng, K., Wei, X. and Zhang, S. (2015).
Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon
as an efficient catalyst for oxygen reduction reaction. Nano Energy, 16(2015): 408-418.
23.
Pontrello, J. K., Allen, M. J., Underbakker, E. S. and
Kiessling, L. L. (2005). Solid-phase synthesis of polymers using the
ring-opening metathesis polymerization. Journal
of American Chemical Society, 127(42): 14536-14537.
24.
Sortino, M., Garibotto, F., Fihlo, V. C., Gupta, M., Enriz,
R. and Zacchino, S. (2011). Antifungal cyctotoxic and SAR studies of a series
of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrroledinones
and related compounds. Bioorganic Medicinal
Chemistry, 19(9): 2823-2834.
25.
Bouissane, L., Sestelo, J. P. and Sarandeses, L. A. (2009). Synthesis
of 3,4-disubstituted maleimides by selective cross-coupling reactions using
indium organometallics. Organic Letters,
11(6): 1285-1288.
26.
Hurd, C.D. and Prapas, A.G. (1959). Preparation of acylcic
imides. Journal of Organic Chemistry, 24(3): 388-392.
27.
Walker, M. A. (1995). A high yielding synthesis of N-alkyl
maleimides using a novel modification of the Mitsunobu reaction. Journal of Organic Chemistry, 60(16):
5352-555.
28.
Chen, D. C., Ye, H. Q. and Wu, H. (2007). A more efficient
synthetic process of N-arylphthalimides
in ionic liquid [bmim][BF4]. Catalysis
Communications, 8(10): 1527-1530.
29.
Habibi, D. and Pordanjani, H. M. (2017). Phthalimide-N-sulfonic
acid, an efficient catalyst for the synthesis of various isoindoline-1,3-dione
derivatives. Chemical Papers, 71(11):
2293-2299.