Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 31 - 39
DOI:
10.17576/mjas-2019-2301-04
MITIGATION OF TOXIC Alexandrium tamiyavanichii USING CHITOSAN-SILICA COMPOSITE
(Mitigasi Alexandrium tamiyavanichii Bertoksik Menggunakan Komposit
Kitosan-Silika)
Anwar Iqbal1*,
Najwa Ahmad2, Normawaty Mohammad Noor2, Lee D. Wilson3,
Nur Hanisah Ibrahim1
1School of Chemical Sciences,
Universiti Sains
Malaysia, 11800 USM Penang, Malaysia
2
Department of Marine Science,
Kulliyyah of Science,
International
Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota,
25200 Kuantan, Pahang, Malaysia
3Department
of Chemistry, 110 Science Place, Room 156 Thorvaldson Building,
University of Saskatchewan, Saskatoon, S7N 5C9
Canada
*Corresponding
author: anwariqbal@usm.my
Received: 24
January 2018; Accepted: 13 September 2018
Abstract
The
harmful algal bloom (HABs) phenomena affects
human health, ecosystems, fishing, and
tourism industries. In a single occasion,
the loss due to HABs can reach thousands of Ringgit Malaysia. In this study, a chitosan-silica
composite (RHA-CHi) was synthesized via sol-gel technique for the mitigation
of Alexandrium tamiyavanichii, a toxic HAB
species isolated from Malaysian waters. Rice husk ash silica was used as the silica precursor in the composite
synthesis. The FT-IR spectroscopy suggests that the chitosan was covalently bonded with the surface silanol
groups. Light microscope analysis showed that the algal cells were stuck on the
surface of the composite and underwent lysis.
The incorporation of chitosan decreased the surface negative charge of the
silica, hence, increasing the electrostatic attraction between the cells and
RHA-Chi. The removal efficiency of A.
tamiyavanichii
was 75% using 0.1 mg/mL of RHA-Chi in 2 hours, increasing to 85% after 24 hours.
Reduced removal efficiency (16%) was
observed using silica alone. The findings show that the chitosan-silica
composite has high potential to be used in the mitigation of A. tamiyavanichii.
Keywords:
toxic algae, flocculate, silica, chitosan, rice husk
Abstrak
Fenomena
ledakan alga-bahaya mengancam kesihatan manusia, industri perikanan dan
pelancongan. Dalam satu kejadian, kerugian boleh mencecah ribuan Ringgit
Malaysia. Dalam kajian ini, komposit kitosan-silika (RHA-CHi) telah disintesis
melalui kaedah sol-gel untuk mitigasi Alexandrium
tamiyavanichii,
spesis bertoksik HAB yang dipencilkan
dari perairan Malaysia. Abu sekam padi telah digunakan sebagai pelopor silika
dalam sintesis komposit. Spektroskopi FT-IR menunjukkan kitosan terikat secara
kovalen dengan kumpulan silanol permukaan. Analisis mikroskopi cahaya menunjukkan sel alga melekat pada permukaan
komposit dan mengalami lisis. Penggabungan kitosan telah mengurangkan cas
negatif permukaan silika lalu meningkatkan tarikan elektrostatik antara sel dan
RHA-Chi. Kecekapan penyingkiran A.
tamiyavanichii
dalam masa 2 jam
apabila 0.1 mg/ml RHA-Chi digunakan adalah 75% dan meningkat ke
85% selepas 24 jam manakala pengurangan kecekapan
penyingkiran (16%) diperhatikan bagi silika sahaja. Penemuan ini menunjukan
komposit kitosan-silika mempunyai potensi yang tinggi untuk digunakan dalam
mitigasi ledakan alga-bahaya terutamanya A. tamiyavanichii.
Kata
kunci: alga beracun,
mengumpal, silika, kitosan, sekam padi
References
1.
Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S.
O., Trick, C. G., Kudel, R. M., Ishikawa,
A., Bernard, S., Wulfi, A., Anderson, D.
M. and Cochlan, W. P. (2015). Harmful algal blooms and climate change: learning
from the past and present to forecast the future. Harmful Algae, 49: 68-93.
2.
Usup, G., Leaw, C. P., Asmat, A.
and Lim, P. T. (2002). Alexandrium
(Dinophyceae) species in Malaysian waters. Harmful
Algae, 1: 265-75.
3.
Mohammad-Noor, N., Aimimuliani
A., Po T. L., Chui P. L. , Winnie L. S.
L., G. R. Liow, Noraslinda M. B., Nurul A. H., Azlan M. N., Norazizah, K. and
Devaraj, M. (2017). First report of paralytic shellfish poisoning (PSP) caused by
Alexandrium tamiyavanichii in Kuantan
Port, Pahang, East Coast of Malaysia. Phycological
Research, 66:37-44.
4.
Liu, Y., Cao, X., Yu, Z., Song,
X. and Qiu, L. (2016). Controlling harmful algae
blooms using aluminum-modified clay. Marine Pollution Bulletin, 103: 211-219.
5.
Hao, H., Wu, M., Chen, Y., Tang,
J. and Wu, Q. (2004). Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and
Surfaces B: Biointerfaces, 33: 151-156.
6.
Pan, G., Jin, C. and Anderson, D.
M. (2011). Modified local sands for the
mitigation of harmful algal blooms. Harmful
Algae, 10: 381-387.
7.
Laue, P., Bährs, H., Chakrabarti, S. and Christian, S. E. W. (2014).
Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: Contrasting
efficacy of tannic acid, gallic acid, and
gramine. Chemosphere, 104: 212-220.
8.
Fan, J., Ho, L., Hobson, P. and
Brookes, J. (2013). Evaluating the effectiveness
of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and
ozone on cyanobacterial cell integrity. Water Research, 47: 5153-5164.
9.
Ying,
Z. T., Yoonja K., Dianna B. and Christopher J. G. (2015). The ability of the
red macroalga, Porphyra purpurea
(Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae.
Journal of Applied Phycology,
27:531–544.
10.
Marcoval,
M. A., Pan, J., Tang, Y. and Gobler, C. J. (2013). The ability of the
branchiopod, Artemia salina, to graze
upon harmful algal blooms caused by Alexandrium
fundyense, Aureococcus
anophagefferens, and Cochlodinium
polykrikoides. Estuarine, Coastal Shelf Science, 131: 235-244.
11.
Jančula, D. and Maršálek,
B. (2011). Critical review of actually available chemical compounds for
prevention and
management of cyanobacterial blooms. Chemosphere, 85: 1415-1422.
12.
Shao, J., Li, R., Lepo, J. E. and
Gu, J. D. (2013). Potential for control
of harmful cyanobacterial blooms using biologically derived substances: Problems
and prospects. Journal of Environmental
Management, 125: 149-155.
13.
Adam, F., H. Osman, and Mohammed,
H. K. (2009). The immobilization of 3-(chloropropyl)triethoxysilane onto silica by simple one pot synthesis. Journal of Colloid and Interface Science,
331:143-147.
14.
Ramya, R., Sudha, P. N. and
Mahalakshmi, J. (2012). Preparation and characterization of chitosan binary
blend. International Journal of
Scientific and Research Publications, 2(10): 1-9.
15.
Mano, J. F., Koniarova, D. and Reis, R. L. (2003). Thermal properties of
thermoplastic starch/synthetic polymer blends with potential biomedical
applicability. Journal of Materials
Science: Materials in Medicine, 14: 127-135.
16.
Xu, Y., Kim, K., Hanna, M. and
Nag, D. (2005). Chitosan-starch composite film: Preparation and
characterization. Industrial Crops and
Products, 21: 185-192.
17.
Paluszkiewicz, C., Stodolak, E., Hasik,
M. and Blazewicz, M. (2011). FT-IR study of montmorillonite–chitosan nanocomposite
materials. Spectrochimica Acta, 79:
784-788.
18.
Vetrieval, S. and Pandurangan, A.
(2004). Vapour-phase oxidation of ethylbenzene with air over mn-containing MCM-41
mesoporous molecular sieves. Applied
Catalysis A: General, 264: 243-252.
19.
Adam, F. and Iqbal, A. (2011).
The oxidation of styrene by chromium-heterogenous catalyst prepared from
rice-husk. Chemical Engineering Journal,
160(2): 742-750.
20.
Ibrahem, S. and Ibrahem, H. (2013).
Preparation and study properties of silica using sol-gel method. International Journal of Application or
Innovation in Engineering & Management, 12: 111-116.
21.
Cruz, R. S. D., Silva, J. M. S. D.,
Arnold, U. and Schuchardt, U. (2001).
Catalytic activity and stability of a chromium containing silicate in liquid
phase cyclohexane oxidation. Journal of
Molecular Catalysis A: Chemical, 171: 251-257.
22.
Chassary P, Vincent, T. and
Guibal, E. (2004). Metal anion sorption on chitosan and derivative materials: A strategy for polymer modification and optimum
use. Reactive and Functional Polymers,
60:137-149.
23.
Kavitha, K, Sutha, S., Prabhu, M.,
Rajendran, V. and Jayakumar, T. (2013). In situ synthesized novel biocompatible
titania–chitosan nanocomposites with high surface area and antibacterial
activity. Carbohydrate Polymers, 93:
731-9.
24.
Budnyak , T. M., Pylypchuk, I.V.,
Tertykh, V. A., Yanovska, E. S. and
Kolodynska, D. (2015). Synthesis and adsorption properties of chitosan-silica
nanocomposite prepared by sol-gel method. Nanoscale
Research Letters, 10: 87: 1-10.
25.
Budnyak, T., Tertykh, V. and
Yanovska, E. (2014). Chitosan immobilized on silica surface for wastewater
treatment. Materials Science
(Medžiagotyra), 20: 177-182.
26.
Qun, G. and Ajun, W. (2006).
Effects of molecular weight, degree of acetylation and ionic strength on
surface tension of chitosan in dilute solution. Carbohydrate Polymer, 64(1): 29-36.
27.
Berge, T., Daugbjerg, N.,
Andersen, B. B. and Hansen, P. J. (2010). Effect of lowered pH on marine
phytoplankton growth rates. Marine
Ecology Progress Series, 416: 79-91.
28.
Rejane C. G., Douglas de, B. and
Odilio, B. G. A. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3):
241-247.
29.
Jiexia, L., Yi, Z., Yujun T.,
Yuanming Z., Li, A., Li, T., Ming, S. and Chengwu, Z. (2013). Freshwater microalgae
harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(98): 1-11.