Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 31 - 39

DOI: 10.17576/mjas-2019-2301-04

 

 

 

MITIGATION OF TOXIC Alexandrium tamiyavanichii USING CHITOSAN-SILICA COMPOSITE

 

(Mitigasi Alexandrium tamiyavanichii Bertoksik Menggunakan Komposit Kitosan-Silika)

 

Anwar Iqbal1*, Najwa Ahmad2, Normawaty Mohammad Noor2, Lee D. Wilson3, Nur Hanisah Ibrahim1

 

1School of Chemical Sciences,

Universiti Sains Malaysia, 11800 USM  Penang, Malaysia

2 Department of Marine Science, Kulliyyah of Science,

International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Department of Chemistry, 110 Science Place, Room 156 Thorvaldson Building,

University of Saskatchewan, Saskatoon, S7N 5C9 Canada

 

*Corresponding author:  anwariqbal@usm.my

 

 

Received: 24 January 2018; Accepted: 13 September 2018

 

 

Abstract

The harmful algal bloom (HABs) phenomena affects human health, ecosystems, fishing, and tourism industries. In a single occasion, the loss due to HABs can reach thousands of Ringgit Malaysia. In this study, a chitosan-silica composite (RHA-CHi) was synthesized via sol-gel technique for the mitigation of Alexandrium tamiyavanichii, a toxic HAB species isolated from Malaysian waters. Rice husk ash silica was used as the silica precursor in the composite synthesis. The FT-IR spectroscopy suggests that the chitosan was covalently bonded with the surface silanol groups. Light microscope analysis showed that the algal cells were stuck on the surface of the composite and underwent lysis.  The incorporation of chitosan decreased the surface negative charge of the silica, hence, increasing the electrostatic attraction between the cells and RHA-Chi. The removal efficiency of A. tamiyavanichii was 75% using 0.1 mg/mL of RHA-Chi in 2 hours, increasing to 85% after 24 hours. Reduced removal efficiency (16%) was observed using silica alone. The findings show that the chitosan-silica composite has high potential to be used in the mitigation of A. tamiyavanichii. 

 

Keywords:  toxic algae, flocculate, silica, chitosan, rice husk

 

Abstrak

Fenomena ledakan alga-bahaya mengancam kesihatan manusia, industri perikanan dan pelancongan. Dalam satu kejadian, kerugian boleh mencecah ribuan Ringgit Malaysia. Dalam kajian ini, komposit kitosan-silika (RHA-CHi) telah disintesis melalui kaedah sol-gel untuk mitigasi Alexandrium tamiyavanichii, spesis bertoksik HAB yang dipencilkan dari perairan Malaysia. Abu sekam padi telah digunakan sebagai pelopor silika dalam sintesis komposit. Spektroskopi FT-IR menunjukkan kitosan terikat secara kovalen dengan kumpulan silanol permukaan. Analisis mikroskopi cahaya menunjukkan sel alga melekat pada permukaan komposit dan mengalami lisis. Penggabungan kitosan telah mengurangkan cas negatif permukaan silika lalu meningkatkan tarikan elektrostatik antara sel dan RHA-Chi. Kecekapan penyingkiran A. tamiyavanichii dalam masa 2 jam  apabila 0.1 mg/ml RHA-Chi digunakan adalah 75% dan meningkat ke 85% selepas 24 jam manakala pengurangan kecekapan penyingkiran (16%) diperhatikan bagi silika sahaja. Penemuan ini menunjukan komposit kitosan-silika mempunyai potensi yang tinggi untuk digunakan dalam mitigasi ledakan alga-bahaya terutamanya A. tamiyavanichii. 

 

Kata kunci:  alga beracun, mengumpal, silika, kitosan, sekam padi

 

References

1.       Wells, M. L.,  Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudel, R. M., Ishikawa, A., Bernard, S., Wulfi, A.,  Anderson, D. M. and Cochlan, W. P. (2015). Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae, 49: 68-93.

2.       Usup, G., Leaw, C. P., Asmat, A. and Lim, P. T. (2002). Alexandrium (Dinophyceae) species in Malaysian waters. Harmful Algae, 1: 265-75.

3.       Mohammad-Noor, N., Aimimuliani A., Po T. L., Chui P. L. , Winnie L. S. L., G. R. Liow, Noraslinda M. B., Nurul A. H., Azlan M. N., Norazizah, K. and Devaraj, M. (2017). First report of paralytic shellfish poisoning (PSP) caused by Alexandrium tamiyavanichii in Kuantan Port, Pahang, East Coast of Malaysia. Phycological Research, 66:37-44.

4.       Liu, Y., Cao, X., Yu, Z., Song, X. and Qiu, L. (2016). Controlling harmful algae blooms using aluminum-modified clay. Marine Pollution Bulletin, 103: 211-219.

5.       Hao, H., Wu, M., Chen, Y., Tang, J. and Wu, Q. (2004). Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and Surfaces B: Biointerfaces, 33: 151-156.

6.       Pan, G., Jin, C. and Anderson, D. M. (2011). Modified local sands for the mitigation of harmful algal blooms. Harmful Algae, 10: 381-387.

7.       Laue, P., Bährs, H., Chakrabarti, S. and Christian, S. E. W. (2014). Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: Contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere, 104: 212-220.

8.       Fan, J., Ho, L., Hobson, P. and Brookes, J. (2013). Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Research, 47: 5153-5164.

9.       Ying, Z. T., Yoonja K., Dianna B. and Christopher J. G. (2015). The ability of the red macroalga, Porphyra purpurea (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. Journal of Applied Phycology, 27:531–544.

10.    Marcoval, M. A., Pan, J., Tang, Y. and Gobler, C. J. (2013). The ability of the branchiopod, Artemia salina, to graze upon harmful algal blooms caused by Alexandrium fundyense, Aureococcus anophagefferens, and Cochlodinium polykrikoides. Estuarine, Coastal Shelf Science, 131: 235-244.

11.    Jančula, D. and  Maršálek, B. (2011). Critical review of actually available chemical compounds for prevention and  management of cyanobacterial blooms. Chemosphere, 85: 1415-1422.

12.    Shao, J., Li, R., Lepo, J. E. and Gu, J. D. (2013). Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. Journal of Environmental Management, 125: 149-155.

13.    Adam, F., H. Osman, and Mohammed, H. K. (2009). The immobilization of 3-(chloropropyl)triethoxysilane onto silica by simple one pot synthesis. Journal of Colloid and Interface Science, 331:143-147.

14.    Ramya, R., Sudha, P. N. and Mahalakshmi, J. (2012). Preparation and characterization of chitosan binary blend. International Journal of Scientific and Research Publications, 2(10): 1-9.

15.    Mano, J. F., Koniarova, D. and Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine, 14: 127-135.

16.    Xu, Y., Kim, K., Hanna, M. and Nag, D. (2005). Chitosan-starch composite film: Preparation and characterization. Industrial Crops and Products, 21: 185-192.

17.    Paluszkiewicz, C., Stodolak, E., Hasik, M. and Blazewicz, M. (2011). FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochimica Acta, 79: 784-788.

18.    Vetrieval, S. and Pandurangan, A. (2004). Vapour-phase oxidation of ethylbenzene with air over mn-containing MCM-41 mesoporous molecular sieves. Applied Catalysis A: General, 264: 243-252.

19.    Adam, F. and Iqbal, A. (2011). The oxidation of styrene by chromium-heterogenous catalyst prepared from rice-husk. Chemical Engineering Journal, 160(2): 742-750.

20.    Ibrahem, S. and Ibrahem, H. (2013). Preparation and study properties of silica using sol-gel method. International Journal of Application or Innovation in Engineering & Management, 12: 111-116.

21.    Cruz, R. S. D., Silva, J. M. S. D., Arnold, U. and Schuchardt, U. (2001). Catalytic activity and stability of a chromium containing silicate in liquid phase cyclohexane oxidation. Journal of Molecular Catalysis A: Chemical, 171: 251-257.

22.    Chassary P, Vincent, T. and Guibal, E. (2004). Metal anion sorption on chitosan and derivative materials: A  strategy for polymer modification and optimum use. Reactive and Functional Polymers, 60:137-149.

23.    Kavitha, K, Sutha, S., Prabhu, M., Rajendran, V. and Jayakumar, T. (2013). In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93: 731-9.

24.    Budnyak , T. M., Pylypchuk, I.V., Tertykh, V. A., Yanovska, E. S.  and Kolodynska, D. (2015). Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Research Letters, 10: 87: 1-10.

25.    Budnyak, T., Tertykh, V. and Yanovska, E. (2014). Chitosan immobilized on silica surface for wastewater treatment. Materials Science (Medžiagotyra), 20: 177-182.

26.    Qun, G. and Ajun, W. (2006). Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymer, 64(1): 29-36.

27.    Berge, T., Daugbjerg, N., Andersen, B. B. and Hansen, P. J. (2010). Effect of lowered pH on marine phytoplankton growth rates. Marine Ecology Progress Series, 416: 79-91.

28.    Rejane C. G., Douglas de, B. and Odilio, B. G. A. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3): 241-247.

29.    Jiexia, L., Yi, Z., Yujun T., Yuanming Z., Li, A., Li, T., Ming, S. and Chengwu, Z. (2013). Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnology for Biofuels, 6(98): 1-11.

 




Previous                    Content                    Next