Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 648 - 653

DOI: 10.17576/mjas-2019-2304-10

 

 

 

HYDROSILYLATION OF ALDEHYDES CATALYZED BY DIETHYL 2-PYRIDYLPHOSPHONATE

 

(Hidrosililasi Aldehida Bermangkin Dietil 2-Piridilfosfonat)

 

Natsuhisa Oka1,2*, Kousuke Ito1, Kaori Ando1*

 

1Department of Chemistry and Biomolecular Science, Faculty of Engineering

2Center for Highly Advanced Integration of Nano and Life Sciences

Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

 

*Corresponding author:  oka@gifu-u.ac.jp, ando@gifu-u.ac.jp

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

We studied the catalytic activity of diethyl pyridylphosphonates in the hydrosilylation of aldehydes using HSiCl3 as a hydride source. Diethyl 2-pyridylphosphonate was found to be a good catalyst, while 2-pyridylthiophosphonate, 3- and 4-pyridylphosphonates, and phenylphosphonate showed much lower catalytic activity.  The  study  shows  that  diethyl 2-pyridylphosphonate works as a bidentate Lewis base catalyst to activate HSiCl3. A complete chemoselective hydrosilylation of benzaldehyde in the presence of acetophenone was also demonstrated.

 

Keywords:  hydrosilylation, aldehyde, pyridyl, phosphonate, chemoselective

 

Abstrak

Kami mengkaji aktiviti pemangkinan dietil piridilfosfonat di dalam hidrosililasi aldehida telah dikaji dalam makalah ini menggunakan HSiCl3 sebagai sumber hidrida. Dietil 2-piridilfosfonat didapati merupakan pemangkin yang baik sementara 2-piridiltiolfosfonat, 3- dan 4- piridilfosfonat, dan fenilfosfonat menunjukkan aktiviti pemangkinan yang lebih rendah. Kajian ini menunjukkan dietil 2-piridilfosfonat berfungsi sebagai pemangkin Lewis bes bidentat untuk mengaktifkan HSiCl3. Satu hidrosililasi kemoselektif lengkap benzaldehida dengan kewujudan asetofenon juga telah dapat ditunjukkan dalam kajian ini.

 

Kata kunci:  hidrosililasi, aldehida, piridil, fosfonat, kemoselektif

 

References

1.       Herrera, R. P. (2016). Organocatalytic transfer hydrogenation and hydrosilylation reactions. Topics in Current Chemistry, 374(29): 1-40. 

2.       Kocovsky, P. and Malkov, A. V. Edited by Vedejs, E. and Denmark, S. E. (2016). Lewis bases as catalysts in the reduction of imines and ketones with silanes (n σ*). Lewis base catalysis in organic synthesis. Wiley-VCH, Germany: pp. 1077-1112.

3.       Boyer, J., Corriu, R. J. P., Perz, R. and Reye, C. (1979). Catalyse heterogene en presence de sels et sans solvant: II. Hydrosilylation d'aldehydes et de cetones satures et α,β ethyleniques. Journal of Organometallic Chemistry, 172(2): 143-152.

4.       Corriu, R. J. P., Perz, R. and Reye, C. (1983). Activation of silicon-hydrogen, silicon-oxygen, silicon-nitrogen bonds in heterogeneous phase: some new methods in organic synthesis. Tetrahedron, 39(6): 999-1009.

5.       Fujita, M. and Hiyama, T. (1984). Highly diastereocontrolled reduction of ketones by means of hydrosilanes. practical synthesis of optically active 1,2-diols and 2-amino alcohols of threo or erythro configuration. Journal of the American Chemical Society, 106(16): 4629-4630.

6.       Fujita, M. and Hiyama, T. (1988). Erythro-directive reduction of α-substituted alkanones by means of hydrosilanes in acidic media. The Journal of Organic Chemistry, 53(23): 5415-5421.

7.       Kohra, S., Hayashida, H., Tominaga, Y. and Hosomi, A. (1988). Pentaco-ordinate organosilicon compounds in synthesis: Asymmetric reduction of carbonyl compounds with hydrosilanes catalyzed by chiral bases. Tetrahedron Letters, 29(1): 89-92.

8.       Hojo, M., Fujii, A., Murakami, C., Aihara, H. and Hosomi, A. (1995). Divergent stereoselectivity in the reduction of α,β-epoxy ketones using hydridosilicates. Tetrahedron Letters, 36(4): 571-574.

9.       Van der Jeught, S. and Stevens, C. V. (2009). Direct phosphonylation of aromatic azaheterocycles. Chemical Reviews, 109(6): 2672-2702.

10.    Onomura, O., Kouchi, Y., Iwasaki, F. and Matsumura, Y. (2006). New organic activators for the enantioselective reduction of aromatic imines with trichlorosilane. Tetrahedron Letters, 47(22): 3751- 3754.

11.    Onomura, O., Kirira, P. G., Tanaka, T., Tsukada, S., Matsumura, Y. and Demizu, Y. (2008). Diastereoselective arylation of l-proline derivatives at the 5-position. Tetrahedron, 64(32): 7498-7503.

12.    Zheng, H., Deng, J., Lin, W. and Zhang, X. (2007). Enantioselective hydrosilylations of ketimines with trichlorosilane promoted by chiral n-picolinoylaminoalcohols. Tetrahedron Letters, 48(45): 7934-7937.

13.    Zheng, H.-J., Chen, W.-B., Wu, Z.-J., Deng, J.-G., Lin, W.-Q., Yuan, W.-C. and Zhang, X.-M. (2008). Highly enantioselective synthesis of β-amino acid derivatives by the Lewis base catalyzed hydrosilylation of β-enamino esters. Chemistry – A European Journal, 14(32): 9864-9867.

14.    Guizzetti, S., Benaglia, M. and Rossi, S. (2009). Highly stereoselective metal-free catalytic reduction of imines: an easy entry to enantiomerically pure amines and natural and unnatural α-amino esters. Organic Letters, 11(13): 2928-2931.

15.    Xiao, Y.-C., Wang, C., Yao, Y., Sun, J. and Chen, Y.-C. (2011). Direct asymmetric hydrosilylation of indoles: combined Lewis base and Brønsted acid activation. Angewandte Chemie International Edition, 50(45): 10661-10664.

16.    Malkov, A. V., Stewart-Liddon, A. J. P., McGeoch, G. D., Ramirez-López, P. and Kočovský, P. (2012). Catalyst development for organocatalytic hydrosilylation of aromatic ketones and ketimines. Organic & Biomolecular Chemistry, 10(25): 4864-4877.

17.    Malkov, A. V., Liddon, A. J. S., Ramírez-López, P., Bendová, L., Haigh, D. and Kočovský, P. (2006). Remote chiral induction in the organocatalytic hydrosilylation of aromatic ketones and ketimines. Angewandte Chemie International Edition, 45(9): 1432-1435.

18.    Bonsignore, M., Benaglia, M., Annunziata, R. and Celentano, G. (2011). New, readily available organocatalysts for the enantioselective reduction of α-imino- and β-imino esters. Synlett, (8): 1085- 1088.

19.    Oka, N., Ito, K., Tomita, F. and Ando, K. (2012). Synthesis of 2-pyridylphosphinate and thiophosphinate derivatives by nucleophilic aromatic substitution of n-methoxypyridinium tosylates. Chemistry Letters, 41(12): 1630-1632.

20.    Oka, N., Ori, K. and Ando, K. (2017). Synthesis of 2-pyridylthiophosphinic acids and 2-pyridylthiophosphonate monoesters via nucleophilic aromatic substitution. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(4): 454-463.

21.    Redmore, D. (1970). Phosphorus derivatives of nitrogen heterocycles. 2. pyridinephosphonic acid derivatives. The Journal of Organic Chemistry, 35(12): 4114-4117.

22.    Chen, D., Martell, A. E., Motekaitis, R. J. and McManus, D. (1998). Syntheses and Fe(II)/Fe(III) equilibria of the new multidentate ligands pyridine-2-phosphonic-6-carboxylic acid and 2,6-pyridinediphosphonic acid for the use of their iron chelates as catalysts for the oxidation of H2S to S8 by air. Canadian Journal of Chemistry, 76(4): 445-451.

23.    Johansson, T., Kers, A. and Stawinski, J. (2001). 2-pyridylphosphonates: A new type of modification for nucleotide analogues. Tetrahedron Letters, 42(11): 2217-2220.

24.    Pitt, L. S., Large, G. B. and MacDonald, A. A. (1978). Insecticidal diethyl 2-​pyridinethionophosphonate. German Offen., CAN: 89: 18370.

25.    Hirao, T., Masunaga, T., Yamada, N., Ohshiro, Y. and Agawa, T. (1982). Palladium-catalyzed new carbon-phosphorus bond formation. Bulletin of the Chemical Society of Japan., 55(3): 909-913.

26.    Kalek, M., Jezowska, M. and Stawinski, J. (2009). Preparation of arylphosphonates by palladium(0)-catalyzed cross-coupling in the presence of acetate additives: Synthetic and mechanistic studies. Advanced Synthesis & Catalysis, 351(18): 3207-3216.

27.    Brook, M. A. (2000). Atomic and molecular properties of silicon. silicon in organic, organometallic, and polymer chemistry. Wiley-Interscience, New York: pp. 27-38.

28.    Theis, B., Metz, S., Burschka, C., Bertermann, R., Maisch, S. and Tacke, R. (2009). Neutral pentacoordinate silicon(iv) complexes with silicon-chalcogen (S, Se, Te) bonds. Chemistry – A European Journal, 15(30): 7329-7338.

29.    Hosomi, A., Hayashida, H., Kohra, S. and Tominaga, Y. (1986). Pentaco-ordinate silicon compounds in synthesis: chemo- and stereo-selective reduction of carbonyl compounds using trialkoxy-substituted silanes and alkali metal alkoxides. Journal of the Chemical Society, Chemical Communications, (18): 1411-1412.

30.    Kobayashi, S., Yasuda, M. and Hachiya, I. (1996). Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chemistry Letters, 25(5): 407-408.

31.    Zhao, M., Xie, W. and Cui, C. (2014). Cesium carbonate catalyzed chemoselective hydrosilylation of aldehydes and ketones under solvent-free conditions. Chemistry – A European Journal, 20(30): 9259-9262.

 

 




Previous                    Content                    Next