Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 648 - 653
DOI:
10.17576/mjas-2019-2304-10
HYDROSILYLATION OF ALDEHYDES CATALYZED BY DIETHYL 2-PYRIDYLPHOSPHONATE
(Hidrosililasi Aldehida Bermangkin
Dietil 2-Piridilfosfonat)
Natsuhisa Oka1,2*,
Kousuke Ito1, Kaori Ando1*
1Department of Chemistry and Biomolecular Science, Faculty
of Engineering
2Center for Highly Advanced Integration of Nano and Life
Sciences
Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
*Corresponding author: oka@gifu-u.ac.jp, ando@gifu-u.ac.jp
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
We studied the catalytic activity of diethyl pyridylphosphonates
in the hydrosilylation of aldehydes using HSiCl3 as a hydride
source. Diethyl 2-pyridylphosphonate was found to be a good catalyst, while
2-pyridylthiophosphonate, 3- and 4-pyridylphosphonates, and phenylphosphonate
showed much lower catalytic activity. The
study shows that
diethyl 2-pyridylphosphonate works as a
bidentate Lewis base catalyst to activate HSiCl3. A complete
chemoselective hydrosilylation of benzaldehyde in the presence of acetophenone
was also demonstrated.
Keywords: hydrosilylation, aldehyde, pyridyl,
phosphonate, chemoselective
Abstrak
Kami mengkaji
aktiviti pemangkinan dietil piridilfosfonat di dalam hidrosililasi aldehida
telah dikaji dalam makalah ini menggunakan HSiCl3 sebagai sumber
hidrida. Dietil 2-piridilfosfonat didapati merupakan pemangkin yang baik
sementara 2-piridiltiolfosfonat, 3- dan 4- piridilfosfonat, dan fenilfosfonat
menunjukkan aktiviti pemangkinan yang lebih rendah. Kajian ini menunjukkan
dietil 2-piridilfosfonat berfungsi sebagai pemangkin Lewis bes bidentat untuk
mengaktifkan HSiCl3. Satu hidrosililasi kemoselektif lengkap
benzaldehida dengan kewujudan asetofenon juga telah dapat ditunjukkan dalam
kajian ini.
Kata kunci: hidrosililasi,
aldehida, piridil, fosfonat, kemoselektif
References
1.
Herrera, R. P. (2016). Organocatalytic transfer
hydrogenation and hydrosilylation reactions. Topics in Current Chemistry, 374(29): 1-40.
2.
Kocovsky, P. and Malkov, A. V. Edited by Vedejs, E. and
Denmark, S. E. (2016). Lewis bases as catalysts in the reduction of imines and
ketones with silanes (n → σ*).
Lewis base catalysis in organic synthesis. Wiley-VCH, Germany: pp. 1077-1112.
3.
Boyer, J., Corriu, R. J. P., Perz, R. and Reye, C.
(1979). Catalyse heterogene en presence de sels et sans solvant: II.
Hydrosilylation d'aldehydes et de cetones satures et α,β ethyleniques. Journal of Organometallic Chemistry,
172(2): 143-152.
4.
Corriu, R. J. P., Perz, R. and Reye, C. (1983).
Activation of silicon-hydrogen, silicon-oxygen, silicon-nitrogen bonds in
heterogeneous phase: some new methods in organic synthesis. Tetrahedron, 39(6): 999-1009.
5.
Fujita, M. and Hiyama, T. (1984). Highly diastereocontrolled
reduction of ketones by means of hydrosilanes. practical synthesis of optically
active 1,2-diols and 2-amino alcohols of threo or erythro configuration. Journal of the American Chemical Society,
106(16): 4629-4630.
6.
Fujita, M. and Hiyama, T. (1988). Erythro-directive
reduction of α-substituted alkanones by means of hydrosilanes in acidic media. The Journal of Organic Chemistry,
53(23): 5415-5421.
7.
Kohra, S., Hayashida, H., Tominaga, Y. and Hosomi, A.
(1988). Pentaco-ordinate organosilicon compounds in synthesis: Asymmetric
reduction of carbonyl compounds with hydrosilanes catalyzed by chiral bases. Tetrahedron Letters, 29(1): 89-92.
8.
Hojo, M., Fujii, A., Murakami, C., Aihara, H. and
Hosomi, A. (1995). Divergent stereoselectivity in the reduction of α,β-epoxy ketones
using hydridosilicates. Tetrahedron
Letters, 36(4): 571-574.
9.
Van der Jeught, S. and Stevens, C. V. (2009). Direct phosphonylation
of aromatic azaheterocycles. Chemical Reviews, 109(6): 2672-2702.
10.
Onomura, O., Kouchi, Y., Iwasaki, F. and Matsumura, Y.
(2006). New organic activators for the enantioselective reduction of aromatic
imines with trichlorosilane. Tetrahedron Letters, 47(22): 3751- 3754.
11.
Onomura, O., Kirira, P. G., Tanaka, T., Tsukada, S.,
Matsumura, Y. and Demizu, Y. (2008). Diastereoselective arylation of l-proline
derivatives at the 5-position. Tetrahedron,
64(32): 7498-7503.
12.
Zheng, H., Deng, J., Lin, W. and Zhang, X. (2007).
Enantioselective hydrosilylations of ketimines with trichlorosilane promoted by
chiral n-picolinoylaminoalcohols. Tetrahedron Letters, 48(45): 7934-7937.
13.
Zheng, H.-J., Chen, W.-B., Wu, Z.-J., Deng, J.-G., Lin,
W.-Q., Yuan, W.-C. and Zhang, X.-M. (2008). Highly enantioselective synthesis
of β-amino
acid derivatives by the Lewis base catalyzed hydrosilylation of β-enamino esters. Chemistry – A European Journal, 14(32):
9864-9867.
14.
Guizzetti, S., Benaglia, M. and Rossi, S. (2009).
Highly stereoselective metal-free catalytic reduction of imines: an easy entry
to enantiomerically pure amines and natural and unnatural α-amino esters. Organic Letters, 11(13): 2928-2931.
15.
Xiao, Y.-C., Wang, C., Yao, Y., Sun, J. and Chen, Y.-C.
(2011). Direct asymmetric hydrosilylation of indoles: combined Lewis base and Brønsted
acid activation. Angewandte Chemie
International Edition, 50(45): 10661-10664.
16.
Malkov, A. V., Stewart-Liddon, A. J. P., McGeoch, G.
D., Ramirez-López, P. and Kočovský, P. (2012). Catalyst development for
organocatalytic hydrosilylation of aromatic ketones and ketimines. Organic & Biomolecular Chemistry,
10(25): 4864-4877.
17.
Malkov, A. V., Liddon, A. J. S., Ramírez-López, P.,
Bendová, L., Haigh, D. and Kočovský, P. (2006). Remote chiral
induction in the organocatalytic hydrosilylation of aromatic ketones and
ketimines. Angewandte Chemie
International Edition, 45(9): 1432-1435.
18.
Bonsignore, M., Benaglia, M., Annunziata, R. and
Celentano, G. (2011). New, readily available organocatalysts for the
enantioselective reduction of α-imino-
and β-imino
esters. Synlett, (8): 1085- 1088.
19.
Oka, N., Ito, K., Tomita, F. and Ando, K. (2012).
Synthesis of 2-pyridylphosphinate and thiophosphinate derivatives by
nucleophilic aromatic substitution of n-methoxypyridinium
tosylates. Chemistry Letters, 41(12):
1630-1632.
20.
Oka, N., Ori, K. and Ando, K. (2017). Synthesis of
2-pyridylthiophosphinic acids and 2-pyridylthiophosphonate monoesters via
nucleophilic aromatic substitution. Phosphorus,
Sulfur, and Silicon and the Related Elements, 192(4): 454-463.
21.
Redmore, D. (1970). Phosphorus derivatives of nitrogen
heterocycles. 2. pyridinephosphonic acid derivatives. The Journal of Organic Chemistry, 35(12): 4114-4117.
22.
Chen, D., Martell, A. E., Motekaitis, R. J. and
McManus, D. (1998). Syntheses and Fe(II)/Fe(III) equilibria of the new
multidentate ligands pyridine-2-phosphonic-6-carboxylic acid and
2,6-pyridinediphosphonic acid for the use of their iron chelates as catalysts
for the oxidation of H2S to S8 by air. Canadian Journal of Chemistry, 76(4):
445-451.
23.
Johansson, T., Kers, A. and Stawinski, J. (2001). 2-pyridylphosphonates:
A new type of modification for nucleotide analogues. Tetrahedron Letters, 42(11): 2217-2220.
24.
Pitt, L. S., Large, G. B. and MacDonald, A. A. (1978).
Insecticidal diethyl 2-pyridinethionophosphonate. German Offen., CAN: 89: 18370.
25.
Hirao, T., Masunaga, T., Yamada, N., Ohshiro, Y. and
Agawa, T. (1982). Palladium-catalyzed new carbon-phosphorus bond formation. Bulletin of the Chemical Society of Japan.,
55(3): 909-913.
26.
Kalek, M., Jezowska, M. and Stawinski, J. (2009).
Preparation of arylphosphonates by palladium(0)-catalyzed cross-coupling in the
presence of acetate additives: Synthetic and mechanistic studies. Advanced Synthesis & Catalysis,
351(18): 3207-3216.
27.
Brook, M. A. (2000). Atomic and molecular properties of
silicon. silicon in organic, organometallic, and polymer chemistry. Wiley-Interscience,
New York: pp. 27-38.
28.
Theis, B., Metz, S., Burschka, C., Bertermann, R.,
Maisch, S. and Tacke, R. (2009). Neutral pentacoordinate silicon(iv) complexes
with silicon-chalcogen (S, Se, Te) bonds. Chemistry
– A European Journal, 15(30): 7329-7338.
29.
Hosomi, A., Hayashida, H., Kohra, S. and Tominaga, Y.
(1986). Pentaco-ordinate silicon compounds in synthesis: chemo- and
stereo-selective reduction of carbonyl compounds using trialkoxy-substituted
silanes and alkali metal alkoxides. Journal
of the Chemical Society, Chemical Communications, (18): 1411-1412.
30.
Kobayashi, S., Yasuda, M. and Hachiya, I. (1996).
Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient
reducing agent. reduction of aldehydes and imines and reductive amination of
aldehydes under mild conditions using hypervalent hydridosilicates. Chemistry Letters, 25(5): 407-408.
31.
Zhao, M., Xie, W. and Cui, C. (2014). Cesium carbonate
catalyzed chemoselective hydrosilylation of aldehydes and ketones under
solvent-free conditions. Chemistry – A
European Journal, 20(30): 9259-9262.