Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 654 - 659

DOI: 10.17576/mjas-2019-2304-11

 

 

 

THE INTERACTION BETWEEN FIREFLY LUCIFERIN WITH G-QUADRUPLEX DNA AND CT-DNA

 

(Interaksi antara Lusiferin Kunang-Kunang bersama DNA G-Kuadrupleks dan CT-DNA)

 

Nurul Huda Abd Karim*, Roshatiara Shamsuddin, Aida Mastura Mohd Yussof, Nur Amirah Harunar Rashid

 

Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  nurulhuda@ukm.edu.my

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

Firefly bioluminescence gives fascinating challenges and great interest for fundamental sciences. The luciferase enzyme which emits colour for firefly bioluminiscence has been intensively studied by chemists in various applications. Luciferin the substrate of luciferase, is also responsible for the characteristic of yellow light emission from many firefly species. In recent years, the binding of small molecules with DNA has been receiving great attention due to the potential of such binding to inhibit cancer cell growth. G-quadruplex DNA has been discovered as an interesting target since stabilizing its formation in telomere can inhibit the elongation of telomere in cancer cell where enzyme telomerase is 85% activated. Here, we investigate the binding properties between luciferin compound with G-quadruplex DNA. The binding interaction was studied using UV/Vis spectra and fluorescence. The results indicate that luciferin is more selective to stabilize G-quadruplex DNA with Kb = 2.02 ± 0.59 × 105 M- 1 compared to CT-DNA.

 

Keywords:  luciferin, bioluminescence, CT- DNA, G-quadruplex DNA

 

Abstrak

Kunang-kunang biopendarkilau memberikan cabaran yang menarik dan menyumbang kepentingan yang besar dalam bidang sains. Enzim lusiferase yang mengeluarkan pancaran warna bagi kunang-kunang biopendarkilau telah dikaji secara intensif oleh ahli kimia dalam pelbagai aplikasi. Lusiferin merupakan substrat bagi lusiferase yang bertanggungjawab untuk menghasilkan cahaya kekuningan daripada spesis kunang-kunang. Beberapa tahun kebelakangan ini, kajian pengikatan molekul kecil bersama DNA mula menarik perhatian kerana keupayaan pengikatannya dapat merencatkan tumbesaran sel kanser. DNA G-kuadrupleks dijadikan sebagai sasaran utama kerana kestabilan pembentukannnya dalam jujukan telomer dapat merencatkan pemanjangan sel kanser yang diaktifkan oleh 85% enzim telomerase. Melalui kajian ini, interaksi antara sebatian lusiferin dengan DNA G-kuadrupleks telah dikaji. Kajian pengikatan ini dianalisis menggunakan spektrum UV/ Vis dan pendarfluor. Hasil menunjukkan bahawa lusiferin lebih selektif berikat bersama DNA G- kuadrupleks dengan nilai pemalar pengikatan, Kb = 2.02 ± 0.59 × 105 M- 1 berbanding CT-DNA.

 

Kata kunci:  lusiferin, biopendarkilau, CT-DNA, DNA G-kuadrupleks

 

References

1.          Juan, C. G-R., Rodrigo, G-M., Fernando, C-G and Lena, R-A. (2013). Metal-based drug-DNA interactions. Journal of Mexican Chemical Society, 57: 245-259.

2.          Xiaoyan, Z., Yong, W., Qianru, Z. and Zhousheng, Y. (2010). The interaction of taurine–salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe. Spectrochimica Acta Part A, 77: 1–5.

3.          Janati Fard, F., Mashhadi Khoshkhoo, Z., Mirtabatabaei, H., Housaindokht, and Jalal, M. R. (2013). Synthesis, characterization and interaction of N, N0- dipyridoxyl(1,4-butanediamine) Co (III) salen complex with DNA and HAS. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97: 74–82.

4.          Dik-Lung, M., Daniel, S-H. C., Paul, L., Maria, H-T. K., and Chung-Hang, L. (2011). Molecular modeling of drug-DNA interactions: Virtual screening to structure-based design. Biochimie, 93: 1252-1266.

5.          Ricci, C. G and Netz, P. A. (2009). Docking studies on DNA- ligand interactions: Building and application of a protocol to identify the binding mode. Journal of Chemical Information and Modeling, 49: 1925-1935.

6.          Sultanat, Dar A. M, Rizvi, A. and Naseem, I. (2014). Synthesis, evaluation and docking studies of cholecalciferol derivative. Oriental Journal Chemistry, 30(3): 1-6.

7.          Zhanguang, C., Yurui, P., Maohuai, C., Xi, C. and Guomin, Z. (2010). DNA as a target for anticancer compounds screening directly by resonance light scattering technique. The Royal Society of Chemistry, 135: 2653-2660.

8.          Rahim S, Antony A, Lukose G, Mohanan K, Joe I. H and Joseyphus R. S. (2015). Synthesis, spectral characterization and computational studies of metal chelates of 4-n-(2-thienylidene)aminoantipyrine. Oriental Journal Chemistry, 31(4): 1-10.

9.          Taetz, S., Murdter, T. E., Zappc, J., Boettcher, S., Baldes, C., Kleideiter, E., Piotrowska, K., Schaefer, U. F., Klotz, U., Lehr and C.-M. (2008). Decomposition of the telomere-targeting agent BRACO19 in physiological media results in products with decreased inhibitory potential. International Journal of Pharmaceutics, 357: 6-14.

10.        Steven, H. D. H., Mark, A. M. and James, F. C. (2010). Bioluminescence in the Sea. Annual Review of Marine Science, 2: 443–493.

11.        Fre´de´ric, B., Bernengo, J.-C., Min, K.-L. and Steghens, J.-P. (2000). Firefly luciferase generates two low-molecular-weight light-emitting species. Biochemical and Biophysical Research Communications, 270: 247-253.

12.        João, V., Luís, P. da.  S., Joaqui. and da Silva, C.G. E. (2012), Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. Journal of Photochemistry and Photobiology B: Biology, 117: 33-39.

13.        Takayuki, M., Hiroshi, O., Katsushi, A., Hiroaki, M. and Hidetoshi. (2010). Practical application of bioluminescence enzyme immunoassay using enhancer for firefly luciferine-luciferase bioluminescence. The Journal of Biological and Chemical Luminiscence, 26: 167-171.

14.        Muhammad, S., Saqib, A. and Amin, B. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry. Journal of Photochemistry and Photobiology B: Biology, 124: 1–19.

15.        Nahid, S., Somaye, M. and Robabeh A. (2011). DNA interaction studies of a new platinum (II) complex containing different aromatic dinitrogen ligands. Bioinorganic Chemistry and Applications, 2011: 1-8.

16.        Xu-Jian, L., Qi-Pin, Q., Yan-Cheng, L. and Hong, L. (2012). Synthesis, antitumor activity and G-quadruplex DNA/ct-DNA binding properties of a cationic platinum (II) complex of 2-(4-nitro)-imidazole-[5, 6-f][1,10]-phenanthroline. Indian Journal of Chemistry, 53: 787-792.

17.        Lingthoingambi, N., Singh, N. R. and Damayanti, M. (2011). DNA interaction and biological activities of Copper (II) complexes of alkylamidio-O-methylurea, Journal of Chemical and Pharmaceutical Research, 3(6): 187-194.

18.        Nahid, S. and Somaye, M. (2012). Synthesis characterization and DNA interaction studies of a new zn (ii) complex containing different dinitrogen aromatic ligands. Bioinorganic Chemistry and Applications, 2012: 1-6.

19.        Giampaolo, B., Alessio, T., Antonino, L., Anna, M. A., José, M. L., Natalia, B. and Bego˜na G. (2013). DNA-binding of nickel (II), copper (II) and zinc (II) complexes: Structure–affinity relationships. Coordination Chemistry Reviews, 2013: 1-15.

20.        Shamsuddin, R., Sahudin, M. A., Hassan, N. H., and Abd Karim, N. H. (2017). Interaction of N, N’-Bis[4-[1-(2-hydroxyethoxy)]Salicylidene]-phenyldiamine-nickel(II) and copper(II) complexes with G-Quadruplex DNA. Malaysian Journal of Analytical Sciences, 21(3): 544-551.

21.        Mariappan, M., Masahiko, S., Abhik, M. and Bhaskar, G. M. (2012). Synthesis, structure, DNA binding and photonuclease activity of a nickel(II) complex with a N,N-Bis(salicylidene)-9-(3,4-diaminophenyl)acridine ligand, Inorganica Chimica Acta, 390: 95-104.

22.        Narayanaperumal, P. and Natarajan. P. (2013). DNA interaction and antimicrobial activity of novel tetradentate imino-oxalato mixed ligand metal complexes. Inorganic Chemistry Communications, 36: 45-50.

 

 




Previous                    Content                    Next