Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 654 - 659
DOI:
10.17576/mjas-2019-2304-11
THE INTERACTION BETWEEN FIREFLY LUCIFERIN WITH G-QUADRUPLEX DNA AND CT-DNA
(Interaksi antara Lusiferin Kunang-Kunang bersama DNA G-Kuadrupleks
dan CT-DNA)
Nurul Huda Abd
Karim*, Roshatiara Shamsuddin, Aida Mastura Mohd Yussof, Nur Amirah Harunar Rashid
Centre
for Advanced Materials and Renewable Resources, Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: nurulhuda@ukm.edu.my
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
Firefly
bioluminescence gives fascinating challenges and great interest for fundamental
sciences. The luciferase enzyme which emits colour for firefly bioluminiscence
has been intensively studied by chemists in various applications. Luciferin the
substrate of luciferase, is also responsible for the characteristic of yellow
light emission from many firefly species. In recent years, the binding of small molecules with DNA has been receiving great attention due to the
potential of such binding to inhibit cancer cell growth. G-quadruplex DNA has
been discovered as an interesting target since stabilizing its formation in
telomere can inhibit the elongation of telomere in cancer cell where enzyme
telomerase is 85% activated. Here, we
investigate the binding properties between luciferin compound with G-quadruplex
DNA. The binding interaction was studied using
UV/Vis spectra and fluorescence. The results indicate that luciferin is more
selective to stabilize G-quadruplex DNA with Kb = 2.02 ± 0.59 × 105 M- 1 compared to
CT-DNA.
Keywords: luciferin, bioluminescence, CT- DNA,
G-quadruplex DNA
Abstrak
Kunang-kunang
biopendarkilau memberikan cabaran yang menarik dan menyumbang kepentingan yang
besar dalam bidang sains. Enzim lusiferase yang mengeluarkan pancaran warna
bagi kunang-kunang biopendarkilau telah dikaji secara intensif oleh ahli kimia
dalam pelbagai aplikasi. Lusiferin merupakan substrat bagi lusiferase yang
bertanggungjawab untuk menghasilkan cahaya kekuningan daripada spesis
kunang-kunang. Beberapa tahun kebelakangan ini, kajian pengikatan molekul kecil
bersama DNA mula menarik perhatian kerana keupayaan pengikatannya dapat merencatkan
tumbesaran sel kanser. DNA G-kuadrupleks dijadikan sebagai sasaran utama kerana
kestabilan pembentukannnya dalam jujukan telomer dapat merencatkan pemanjangan
sel kanser yang diaktifkan oleh 85% enzim telomerase. Melalui kajian ini, interaksi
antara sebatian lusiferin dengan DNA G-kuadrupleks telah dikaji. Kajian
pengikatan ini dianalisis menggunakan spektrum UV/ Vis dan pendarfluor. Hasil
menunjukkan bahawa lusiferin lebih selektif berikat bersama DNA G- kuadrupleks dengan
nilai pemalar pengikatan, Kb = 2.02 ± 0.59 × 105 M-
1 berbanding CT-DNA.
Kata
kunci: lusiferin, biopendarkilau, CT-DNA, DNA
G-kuadrupleks
References
1.
Juan,
C. G-R., Rodrigo, G-M., Fernando, C-G and Lena, R-A. (2013). Metal-based drug-DNA
interactions. Journal of Mexican Chemical
Society, 57: 245-259.
2.
Xiaoyan,
Z., Yong, W., Qianru, Z. and Zhousheng, Y. (2010). The interaction of
taurine–salicylaldehyde Schiff base copper(II) complex with DNA and the
determination of DNA using the complex as a fluorescence probe. Spectrochimica Acta Part A, 77: 1–5.
3.
Janati
Fard, F., Mashhadi Khoshkhoo, Z., Mirtabatabaei, H., Housaindokht, and Jalal, M.
R. (2013). Synthesis, characterization and interaction of N, N0- dipyridoxyl(1,4-butanediamine)
Co (III) salen complex with DNA and HAS. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 97: 74–82.
4.
Dik-Lung,
M., Daniel, S-H. C., Paul, L., Maria, H-T. K., and Chung-Hang, L. (2011). Molecular
modeling of drug-DNA interactions: Virtual screening to structure-based design.
Biochimie, 93: 1252-1266.
5.
Ricci,
C. G and Netz, P. A. (2009). Docking studies on DNA- ligand interactions: Building
and application of a protocol to identify the binding mode. Journal of Chemical Information and Modeling,
49: 1925-1935.
6.
Sultanat,
Dar A. M, Rizvi, A. and Naseem, I. (2014). Synthesis, evaluation and docking
studies of cholecalciferol derivative. Oriental
Journal Chemistry, 30(3): 1-6.
7.
Zhanguang,
C., Yurui, P., Maohuai, C., Xi, C. and Guomin, Z. (2010). DNA as a target for
anticancer compounds screening directly by resonance light scattering technique.
The Royal Society of Chemistry, 135:
2653-2660.
8.
Rahim
S, Antony A, Lukose G, Mohanan K, Joe I. H and Joseyphus R. S. (2015).
Synthesis, spectral characterization and computational studies of metal
chelates of 4-n-(2-thienylidene)aminoantipyrine. Oriental Journal Chemistry, 31(4): 1-10.
9.
Taetz,
S., Murdter, T. E., Zappc, J., Boettcher, S., Baldes, C., Kleideiter, E.,
Piotrowska, K., Schaefer, U. F., Klotz, U., Lehr and C.-M. (2008). Decomposition
of the telomere-targeting agent BRACO19 in physiological media results in
products with decreased inhibitory potential. International Journal of Pharmaceutics, 357: 6-14.
10.
Steven,
H. D. H., Mark, A. M. and James, F. C. (2010). Bioluminescence in the Sea. Annual Review of Marine Science, 2: 443–493.
11.
Fre´de´ric,
B., Bernengo, J.-C., Min, K.-L. and Steghens, J.-P. (2000). Firefly luciferase
generates two low-molecular-weight light-emitting species. Biochemical and Biophysical Research Communications, 270: 247-253.
12.
João,
V., Luís, P. da. S., Joaqui. and da Silva,
C.G. E. (2012), Advances in the knowledge of light emission by firefly
luciferin and oxyluciferin. Journal of
Photochemistry and Photobiology B: Biology, 117: 33-39.
13.
Takayuki,
M., Hiroshi, O., Katsushi, A., Hiroaki, M. and Hidetoshi. (2010). Practical
application of bioluminescence enzyme immunoassay using enhancer for firefly
luciferine-luciferase bioluminescence. The
Journal of Biological and Chemical Luminiscence, 26: 167-171.
14.
Muhammad,
S., Saqib, A. and Amin, B. (2013). Drug–DNA interactions and their study by
UV–Visible, fluorescence spectroscopies and cyclic voltammetry. Journal of Photochemistry and Photobiology B: Biology, 124: 1–19.
15.
Nahid,
S., Somaye, M. and Robabeh A. (2011). DNA interaction studies of a new
platinum (II) complex containing different aromatic dinitrogen ligands. Bioinorganic Chemistry and Applications,
2011: 1-8.
16.
Xu-Jian,
L., Qi-Pin, Q., Yan-Cheng, L. and Hong, L. (2012). Synthesis, antitumor
activity and G-quadruplex DNA/ct-DNA binding properties of a cationic platinum
(II) complex of 2-(4-nitro)-imidazole-[5, 6-f][1,10]-phenanthroline. Indian
Journal of Chemistry, 53: 787-792.
17.
Lingthoingambi,
N., Singh, N. R. and Damayanti, M. (2011). DNA interaction and biological
activities of Copper (II) complexes of alkylamidio-O-methylurea, Journal of Chemical and Pharmaceutical Research, 3(6): 187-194.
18.
Nahid,
S. and Somaye, M. (2012). Synthesis characterization and DNA interaction
studies of a new zn (ii) complex containing different dinitrogen aromatic
ligands. Bioinorganic Chemistry and
Applications, 2012: 1-6.
19.
Giampaolo,
B., Alessio, T., Antonino, L., Anna, M. A., José, M. L., Natalia, B. and Bego˜na
G. (2013). DNA-binding of nickel (II), copper (II) and zinc (II) complexes:
Structure–affinity relationships. Coordination
Chemistry Reviews, 2013: 1-15.
20.
Shamsuddin,
R., Sahudin, M. A., Hassan, N. H., and Abd Karim, N. H. (2017). Interaction of
N, N’-Bis[4-[1-(2-hydroxyethoxy)]Salicylidene]-phenyldiamine-nickel(II) and
copper(II) complexes with G-Quadruplex DNA. Malaysian
Journal of Analytical Sciences, 21(3): 544-551.
21.
Mariappan,
M., Masahiko, S., Abhik, M. and Bhaskar, G. M. (2012). Synthesis, structure,
DNA binding and photonuclease activity of a nickel(II) complex with a
N,N-Bis(salicylidene)-9-(3,4-diaminophenyl)acridine ligand, Inorganica Chimica Acta, 390: 95-104.
22.
Narayanaperumal,
P. and Natarajan. P. (2013). DNA interaction and antimicrobial activity of
novel tetradentate imino-oxalato mixed ligand metal complexes. Inorganic Chemistry Communications, 36:
45-50.