Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 580 - 585

DOI: 10.17576/mjas-2019-2304-03

 

 

 

ROLE  OF  L-GLUTAMINE  IN THE IN-VITRO GROWTH OF HCT-8 AND HT-29 CELL LINES

 

(Peranan L-Glutamin dalam Pertumbuhan Sel HCT-8 dan HT-29 In-Vitro)

 

Afzan Mat Yusof1*and Mohammed Abdullah Jainul2

 

1Department of Basic Medical Sciences, Kulliyyah of Nursing

2Department of Biomedical Science, Kulliyyah of Allied Health Sciences

International Islamic University Malaysia, Bandar Indera Mahkota, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: afzan@iium.edu.my

 

 

Received: 19 August 2018; Accepted: 3 July 2019

 

 

Abstract

L-glutamine is one of the essential supplements of in-vitro growth medium for cancer cells. The amino acid L-glutamine is well known as the vital source of nutrition in cancer cell growth for its ability to provide carbon and nitrogen. A common phenomenon of cancer cell is the rapid production of lactic acid through aerobic glycolysis. Apart from nutritional value, the released ammonia from L-glutamine may neutralize the acidic environment to ensure continuous cell growth. The current study is to observe the effect of L-glutamine concentration in culture media for cancer cell lines. Detection of L-glutamine consumption by the cells was carried out after 8 hours of incubation period. Numerous culture media were prepared adding L-glutamine concentration of 0 mM, 5 mM and 10 mM with different pH range. The cell density was calculated after 8 hours of incubation using trypan blue staining method. UV-Vis spectrophotometer was used to detect the concentration of L-glutamine consumption. The result shows that the cell density did not increase significantly in the media without L-glutamine supplement whereas, a rapid increase was observed in L-glutamine supplemented growth media in HCT-8 and HT-29 cell lines. The L-glutamine consumption was found higher in the media with low pH, but a relatively low L-glutamine consumption was observed in media with higher pH condition. The result confirms the necessity of L-glutamine in cancer cell growth. In addition, higher L-glutamine uptake in acidic condition supports the role of L-glutamine in acid resistance activity in cancer cell growth.

 

Keywords:  L-glutamine, cancer cell growth, aerobic glycolysis, acid resistance

 

Abstrak

L-glutamin adalah salah satu tambahan penting dalam pertumbuhan medium in-vitro untuk sel-sel kanser. Asid amino L-glutamin terkenal sebagai sumber pemakanan penting dalam pertumbuhan sel kanser kerana keupayaannya menyediakan karbon dan nitrogen. Fenomena sel kanser yang biasa adalah pengeluaran asid laktik melalui glikolisis aerobik. Selain daripada nilai pemakanan, ammonia yang dikeluarkan dari L-glutamin dapat meneutralkan persekitaran asid untuk memastikan pertumbuhan sel berterusan. Kajian semasa adalah untuk melihat kesan kepekatan L-glutamin dalam media kultur untuk sel-sel kanser. Pengesanan penggunaan L-glutamin oleh sel-sel telah dilakukan selepas 8 jam tempoh inkubasi. Sejumlah media kultur telah disediakan dengan menambah kepekatan L-glutamin sebanyak 0 mM, 5 mM dan 10 mM dengan pelbagai pH yang berlainan. Ketumpatan sel dikira selepas 8 jam inkubasi menggunakan kaedah pewarnaan trypan biru. UV-Vis spektrofotometer digunakan untuk mengesan kepekatan penggunaan L-glutamin. Hasilnya menunjukkan bahawa ketumpatan sel tidak meningkat dengan ketara dalam media tanpa tambahan L-glutamin sedangkan, peningkatan pesat diperhatikan dalam media pertumbuhan L-glutamin ditambah dalam sel-sel HCT-8 dan HT-29. Penggunaan L-glutamin didapati lebih tinggi dalam media dengan pH rendah, tetapi penggunaan L-glutamin yang agak rendah diperhatikan dalam media dengan keadaan pH yang lebih tinggi. Hasilnya mengesahkan keperluan L-glutamin dalam pertumbuhan sel kanser. Di samping itu, penyerapan L-glutamin yang lebih tinggi dalam keadaan berasid menyokong peranan L-glutamin dalam aktiviti rintangan asid dalam pertumbuhan sel kanser.

 

Kata kunci:  L-glutamin, pertumbuhan sel kanser, glikolisis aerobik, rintangan asid

 

References

1.       Moyer, M. P., Armstrong, A., Aust, J. B., Levine, B. A. and Sirinek, K. R. (1986). Effects of gastrin, glutamine, and somatostatin on the in vitro growth of normal and malignant human gastric mucosal cells. Archives of Surgery121(3): 285-288.

2.       Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324(5930): 1029-1033.

3.       Hensley, C. T., Wasti, A. T. and DeBerardinis, R. J. (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities. The Journal of Clinical Investigation123(9): 3678-3684.

4.       Corbet, C. and Feron, O. (2015). Metabolic and mind shifts: from glucose to glutamine and acetate addictions in cancer. Current Opinion in Clinical Nutrition & Metabolic Care18(4): 346-353.

5.       Huang, W., Choi, W., Chen, Y., Zhang, Q., Deng, H., He, W. and Shi, Y. (2013). A proposed role for glutamine in cancer cell growth through acid resistance. Cell Research23(5): 724.

6.       Bayley, J. P. and Devilee, P. (2012). The Warburg effect in 2012. Current Opinion in Oncology24(1): 62-67.

7.       Kee, H. J. and Cheong, J. H. (2014). Tumor bioenergetics: an emerging avenue for cancer metabolism targeted therapy. BMB reports47(3): 158.

8.       Warburg, O. (1956). On the origin of cancer cells. Science123(3191): 309-314.

9.       Griffiths, J. R. (1991). Are cancer cells acidic? British journal of cancer64(3): 425.

10.    Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science122(3168): 501-504.

11.    Medina, M. A., Sánchez-Jiménez, F., Márquez, J., Quesada, A. R. and de Castro Núñez, I. (1992). Relevance of glutamine metabolism to tumor cell growth. Molecular and Cellular Biochemistry113(1): 1-15.

12.    Sambrook, J. and Russell, D. W. (2006). Estimation of cell number by hemocytometry counting. Cold Spring Harbor Protocols2006(1), pdb-prot4454.

13.    White, K. A., Grillo-Hill, B. K. and Barber, D. L. (2017). Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal of Cell Science130(4): 663-669.

14.    Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324(5930): 1029-1033.

15.    Helmlinger, G., Sckell, A., Dellian, M., Forbes, N. S. and Jain, R. K. (2002). Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research8(4): 1284-1291.

16.    Tannock, I. F. and Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Research49(16): 4373-4384.

 

 

 




Previous                    Content                    Next