Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 580 - 585
DOI:
10.17576/mjas-2019-2304-03
ROLE OF L-GLUTAMINE IN THE IN-VITRO
GROWTH OF HCT-8 AND HT-29 CELL LINES
(Peranan L-Glutamin dalam Pertumbuhan Sel HCT-8 dan
HT-29 In-Vitro)
Afzan Mat Yusof1*and
Mohammed Abdullah Jainul2
1Department of Basic Medical Sciences, Kulliyyah of Nursing
2Department of Biomedical Science, Kulliyyah of Allied Health Sciences
International
Islamic University Malaysia, Bandar Indera Mahkota, Jalan Sultan
Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
*Corresponding
author: afzan@iium.edu.my
Received: 19 August 2018; Accepted: 3 July 2019
Abstract
L-glutamine is one of the essential
supplements of in-vitro growth medium
for cancer cells. The amino acid L-glutamine is well known as the vital source
of nutrition in cancer cell growth for its ability to provide carbon and
nitrogen. A common phenomenon of cancer cell is the rapid production of lactic
acid through aerobic glycolysis. Apart from nutritional value, the released
ammonia from L-glutamine may neutralize the acidic environment to ensure
continuous cell growth. The current study is to observe the effect of
L-glutamine concentration in culture media for cancer cell lines. Detection of
L-glutamine consumption by the cells was carried out after 8 hours of
incubation period. Numerous culture media were prepared adding L-glutamine concentration
of 0 mM, 5 mM and 10 mM with different pH range. The cell density was calculated
after 8 hours of incubation using trypan blue staining method. UV-Vis
spectrophotometer was used to detect the concentration of L-glutamine
consumption. The result shows that the cell density did not increase
significantly in the media without L-glutamine supplement whereas, a rapid
increase was observed in L-glutamine supplemented growth media in HCT-8 and
HT-29 cell lines. The L-glutamine consumption was found higher in the media
with low pH, but a relatively low L-glutamine consumption was observed in media
with higher pH condition. The result confirms the necessity of L-glutamine in
cancer cell growth. In addition, higher L-glutamine uptake in acidic condition
supports the role of L-glutamine in acid resistance activity in cancer cell
growth.
Keywords: L-glutamine, cancer cell growth, aerobic
glycolysis, acid resistance
Abstrak
L-glutamin
adalah salah satu tambahan penting dalam pertumbuhan medium in-vitro untuk sel-sel kanser. Asid amino
L-glutamin terkenal sebagai sumber pemakanan penting dalam pertumbuhan sel
kanser kerana keupayaannya menyediakan karbon dan nitrogen. Fenomena sel kanser
yang biasa adalah pengeluaran asid laktik melalui glikolisis aerobik. Selain
daripada nilai pemakanan, ammonia yang dikeluarkan dari L-glutamin dapat
meneutralkan persekitaran asid untuk memastikan pertumbuhan sel berterusan.
Kajian semasa adalah untuk melihat kesan kepekatan L-glutamin dalam media
kultur untuk sel-sel kanser. Pengesanan penggunaan L-glutamin oleh sel-sel telah
dilakukan selepas 8 jam tempoh inkubasi. Sejumlah media kultur telah disediakan
dengan menambah kepekatan L-glutamin sebanyak 0 mM, 5 mM dan 10 mM dengan
pelbagai pH yang berlainan. Ketumpatan sel dikira selepas 8 jam inkubasi
menggunakan kaedah pewarnaan trypan biru. UV-Vis spektrofotometer digunakan
untuk mengesan kepekatan penggunaan L-glutamin. Hasilnya menunjukkan bahawa
ketumpatan sel tidak meningkat dengan ketara dalam media tanpa tambahan
L-glutamin sedangkan, peningkatan pesat diperhatikan dalam media pertumbuhan
L-glutamin ditambah dalam sel-sel HCT-8 dan HT-29. Penggunaan L-glutamin
didapati lebih tinggi dalam media dengan pH rendah, tetapi penggunaan
L-glutamin yang agak rendah diperhatikan dalam media dengan keadaan pH yang
lebih tinggi. Hasilnya mengesahkan keperluan L-glutamin dalam pertumbuhan sel
kanser. Di samping itu, penyerapan L-glutamin yang lebih tinggi dalam keadaan
berasid menyokong peranan L-glutamin dalam aktiviti rintangan asid dalam
pertumbuhan sel kanser.
Kata kunci: L-glutamin, pertumbuhan sel kanser, glikolisis aerobik,
rintangan asid
References
1.
Moyer, M. P., Armstrong, A., Aust, J. B., Levine, B. A. and
Sirinek, K. R. (1986). Effects of gastrin, glutamine, and somatostatin on the
in vitro growth of normal and malignant human gastric mucosal cells. Archives
of Surgery, 121(3):
285-288.
2.
Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B.
(2009). Understanding the Warburg effect: the metabolic requirements of cell
proliferation. Science, 324(5930):
1029-1033.
3.
Hensley, C. T., Wasti, A. T. and DeBerardinis, R. J. (2013).
Glutamine and cancer: cell biology, physiology, and clinical opportunities. The
Journal of Clinical Investigation, 123(9): 3678-3684.
4.
Corbet, C. and Feron, O. (2015). Metabolic and mind shifts:
from glucose to glutamine and acetate addictions in cancer. Current
Opinion in Clinical Nutrition & Metabolic Care, 18(4): 346-353.
5.
Huang, W., Choi, W., Chen, Y., Zhang, Q., Deng, H., He, W.
and Shi, Y. (2013). A proposed role for glutamine in cancer cell growth through
acid resistance. Cell Research, 23(5): 724.
6.
Bayley, J. P. and Devilee, P. (2012). The Warburg effect in 2012. Current
Opinion in Oncology, 24(1):
62-67.
7.
Kee, H. J. and Cheong, J. H. (2014). Tumor bioenergetics: an
emerging avenue for cancer metabolism targeted therapy. BMB reports, 47(3): 158.
8.
Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191): 309-314.
9.
Griffiths, J. R. (1991). Are cancer cells acidic? British
journal of cancer, 64(3):
425.
10.
Eagle, H. (1955). Nutrition needs of mammalian cells in
tissue culture. Science, 122(3168): 501-504.
11.
Medina, M. A., Sánchez-Jiménez, F., Márquez, J., Quesada, A.
R. and de Castro Núñez, I. (1992). Relevance of glutamine metabolism to tumor
cell growth. Molecular and Cellular Biochemistry, 113(1): 1-15.
12.
Sambrook, J. and Russell, D. W. (2006). Estimation of cell
number by hemocytometry counting. Cold Spring Harbor Protocols, 2006(1),
pdb-prot4454.
13.
White, K. A., Grillo-Hill, B. K. and Barber, D. L. (2017).
Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. Journal
of Cell Science, 130(4):
663-669.
14.
Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B.
(2009). Understanding the Warburg effect: the metabolic requirements of cell
proliferation. Science, 324(5930):
1029-1033.
15.
Helmlinger, G., Sckell, A., Dellian, M., Forbes, N. S. and
Jain, R. K. (2002). Acid production in glycolysis-impaired tumors provides new
insights into tumor metabolism. Clinical Cancer Research, 8(4): 1284-1291.
16.
Tannock, I. F. and Rotin, D. (1989). Acid pH in tumors and
its potential for therapeutic exploitation. Cancer Research, 49(16): 4373-4384.