Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 595 - 603

DOI: 10.17576/mjas-2019-2304-05

 

 

 

A green colorimetric method using guava leaves extract for quality control of iron content in pharmaceutical formulations

 

(Kaedah Kalorimetrik Hijau Mengunakan Ekstrak Daun Jambu Bagi Kawalan Kualiti Kandungan Besi di dalam Formulasi Farmaseutikal)

 

Watsaka Siriangkhawut1*, Kraingkrai Ponhong1, Kate Grudpan2

 

1Creative Chemistry and Innovation Research Unit,

Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science,

Mahasarakham University, Maha Sarakham 44150, Thailand

2Department of Chemistry, Faculty of Science,

Center of Excellence for Innovation in Analytical Science and Technology,

Chiang Mai University, Chiang Mai 50200, Thailand

 

*Corresponding author:  watsaka@hotmail.com

 

 

Received: 17 April 2019; Accepted: 22 June 2019

 

 

Abstract

A cost-effective and environmentally friendly approach using a simple micro-volume colorimetric method with non-synthetic reagent from plant extracts has been proposed. The crude aqueous extracts from dried guava leaves were utilized as an alternative natural reagent for quantification of iron. The method was based on the measurement of a dark brown complex formed by the reaction between Fe(III) and the crude aqueous extracts in acetate buffer pH 4.5 at 562 nm. The optimum conditions for the extraction parameters such as type of solvent, extraction time and mass of dried plant were investigated. Under the optimum conditions, a linear calibration graph in the range of 1.0 - 10.0 mg L-1 Fe(III) was obtained with limits of detection and quantification of 0.30 and 1.0 mg L-1 Fe(III), respectively. Relative standard deviations of 2.6 and 2.1% were achieved for 2.0 and 4.0 mg L-1 Fe(III) (n=7), respectively. The developed method was successfully applied to quality control of iron in antianemic drug samples. The results are in good agreement with those obtained by the FAAS method at the 95% confidence level. High percentage recoveries between 93 and 99% were obtained.

 

Keywords:  guava leaf, natural reagent, colorimetry, iron, pharmaceutical formulations

 

Abstrak

Pendekatan yang mesra alam dan kos efektif mengunakan kaedah kalorimetrik isipadu-mikro yang mudah dikemukakan dalam kajian ini. Ekstrak akues dari daun jambu yang dikeringkan telah digunapakai sebagai alternatif reagen semulajadi bagi pengkuantitian kandungan besi. Kaedah berasaskan pengukuran kompleks coklat gelap yang terhasil melalui tindak balas Fe(III) dan bahan mentah ekstrak di dalam larutan penimbal asetat pH 4.5 pada 562 nm. Keadaan optimum untuk parameter pengekstrakan seperti jenis pelarut, masa pengekstrakan dan jisim daun yang dikeringkan telah dikaji. Pada keadaan optimum, graf kalibrasi linear diperolehi pada julat 1.0 - 10.0 mg L-1 Fe(III) dengan had pengesanan dan pengkuantitian masing-masing ialah 0.30 and 1.0 mg L-1 Fe(III). Sisihan piawai relative dicapai pada 2.6 dan 2.1% masing-masing bagi 2.0 and 4.0 mg L-1 Fe(III) (n=7). Kaedah yand dibangunkan telah Berjaya digunapakai bagi tujuan kawalan kualiti besi di dalam sampel dadah antianemik. Keputusan yang diperolehi adalah standing dengan hasil yang diperolehi mengunakan kaedah FAAS pada aras keyakinan 95%. Peratus perolehan semula yang tinggi antara 93 dan 99% telah diperolehi.

 

Keywords:  daun jambu, reagen semulajadi, kalorimetri, besi, formulasi farmaseutikal

 

References

1.       Clark, S.F. (2008). Iron deficiency anemia. Nutrition in Clinical Practice, 23: 128-141.

2.       Killip, S., Bennett, J. M. and Chambers, M. D. (2007). Iron deficiency anemia. American Family Physician, 75: 671-678.

3.       Beutler, E., Hoffbrand, A. V., and Cook, J. D. (2003). Iron deficiency and overload. Hematology, ASH Education Book. Americal Society of Hematology, Washington DC: pp. 40-61.

4.       Zachariadis, G. A., Raidou, E. S., Themelis, D. G. and Stratis, J. A. (2002). Determination of mineral content of active dry yeast used in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 28: 463-473.

5.       Zachariadis, G. A. and Michos, C. E. (2007). Development of a slurry introduction method for multi-element analysis of antibiotics by inductively coupled plasma atomic emission spectrometry using various types of spray chamber and nebulizer configurations. Journal of Pharmaceutical and Biomedical Analysis, 43: 951-958.

6.       Karpinska, J. and Kulikoska, M. (2002). Simultaneous determination of zinc(II), manganese(II) and iron(II) in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 29: 153-158.

7.       Zargba, S. and Hopkata, H. (1996). Spectrophotometric determination of Fe(II) in pharmaceutical multivitamin preparations by azo dye derivatives of pyrocatechol. Journal of Pharmaceutical and Biomedical Analysis, 14: 1351-1354.

8.       Rybkowska, N., Koncki, R. and Strzelak, K. (2017). Optoelectronic iron detectors for pharmaceutical flow analysis. Journal of Pharmaceutical and Biomedical Analysis, 145: 504-508.

9.       Vakh, C., Freze, E., Pochivalov, A., Evdokimova, E., Kamencev, M., Moskvin, L. and Butalov, A. (2015). Simultaneous determination of iron (II) and ascorbic acid in pharmaceutical based on flow sandwich technique. Journal of Pharmacological and Toxicological Methods, 73: 56-62.

10.    van Standen, J. F., du Plessis, H. and Taljaard, R. E. (1997). Determination of iron(III) in pharmaceutical samples using dialysis in a sequential injection analysis system. Analytica Chimica Acta, 357: 141-149.

11.    Mulaudzi, L. V., van Staden, J. F. and Stefan, R. I. (2002). On-line determination of iron(II) and iron(III) using a spectrophotometric sequential injection system. Analytica Chimica Acta, 467: 35-49.

12.    Armenta, S., Garrigues, S. and de la Guardia, M. (2008). Green analytical chemistry. Trends in Analytical Chemistry, 27: 497-511.

13.    Grudpan, K., Hartwell, S. K., Lapanantnoppakhun, S. and McKelvie, I. (2010). The case for the use of unrefined natural reagents in analytical chemistry—A green chemical perspective. Analytical Methods, 2: 1651-1661.

14.    Settheeworrarit, T., Hartwell, S. K., Lapanatnoppakhun, S., Jakmunee, J., Christian, G. D. and Grudpan, K. (2005). Exploiting guava leaf extract as an alternative natural reagent for flow injection determination of iron. Talanta, 68: 262-267.

15.    Pinyou, P., Hartwell, S.K., Lapanatnoppakhun, S., Jakmunee, J. and Grudpan, K. (2010). Flow injection determination of iron ions with green tea extracts as a natural chromogenic reagent. Analytical Sciences, 26: 619-623.

16.    Grudpan, K., Hartwell, S. K., Wongwilai, W., Grudpan, S. and Lapanantnoppakhun, S. (2011). Exploiting green analytical procedures for acidity and iron assays employing flow analysis with simple natural reagent extracts. Talanta, 84: 1396-1400.

17.    Jaikrajang, N., Kruanetr, S., Harding, D.J. and Rattanakit, P. (2018). A simple flow injection spectrophotometric procedure for iron(III) determination using Phyllanthus embrica Linn. as a natural reagent. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy, 204: 726-734.

18.    Ganranoo, L., Chokchaisiri, R. and Grudpan, K. (2019). Simple simultaneous determination of iron and manganese by sequential injection spectrophotometry using astilbin extracted from Smilax china L. root. Talanta, 191: 307-312.

19.    Wu, J. W., Hsieh, C. L., Wang, H. Y. and Chen, H. Y. (2009). Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chemistry, 113: 78-84.

20.    Chen, H. Y., and Yen, G. C. (2007). Antioxidant activity and free radical scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chemistry, 101: 686-694.

21.    Zhang, T., Liang, O. R., Qjan, H., Yuan, W. and Yao, W. R. (2006). Extraction and identification of phenolic compounds in acetone extract from guava leaf. Journal of Food Science and Biotechnology, 25: 104-108.

22.    Cakar, S. and Ozacar, M. (2016). Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy, 163: 79-88.

23.    Official Methods of Analysis of AOAC International. (2005). Official Method 952.03, In section 26.1.37, 18th Edition, AOAC International, Gaithersberg, Maryland, USA.

24.    Official Methods of Analysis of AOAC International. (1990). Official Method 977.30, 15th Edition, AOAC International, Gaithersberg, Maryland, USA.

 




Previous                    Content                    Next