Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 604 - 612
DOI:
10.17576/mjas-2019-2304-06
REMOVAL OF PARAQUAT HERBICIDE BY CETYLTRIMETHYL
AMMONIUM BROMIDE MODIFIED PINEAPPLE LEAVES
(Penyingkiran Herbisid Parakuat oleh Daun Nanas yang Diubahsuai dengan
Setiltrimetil Ammonium Bromida)
Nik Ahmad Nizam Nik Malek1,2*, Muhd Hafiz Jusoh2,
Auni Afiqah Kamaru3
1Centre for Sustainable Nanomaterials (CSNano), Ibnu
Sina Institute for Scientific and Industrial Research (ISI-ISIR)
2Department of Biosciences, Faculty of Science
Universiti Teknologi Malaysia, 81310 UTM Sekudai, Johor, Malaysia
3Geomatika University College,
Prima Peninsula, Jalan Setiawangsa 11, Taman
Setiawangsa, 54200 Kuala Lumpur, Malaysia
*Corresponding author: niknizam@utm.my
Received: 19 August 2018; Accepted: 7 July 2019
Abstract
Paraquat herbicide is categorised under contaminants of emerging concern
(CEC) that can cause serious environmental problem and toxic effects towards
human and animals. Also, the decomposing of pineapple leaves by burning in the
field could create environmental problems such as air pollution. Therefore, in
the present study, the pineapple leaves powder (PLP) was utilised as a low-cost
adsorbent to remove paraquat from aqueous solution. The adsorption of paraquat
from aqueous solution by PLP and surfactant-modified PLP (SMPLP) was examined. A
series of SMPLP was prepared by reacting PLP with different concentrations of
cationic surfactant cetyltrimethyl ammonium bromide (CTAB) (0.5, 1.0, 2.5, and
4.0 mM). The PLP and SMPLP were characterised using Fourier transform infrared
(FTIR) spectroscopy after the modification process with CTAB and after adsorption
with paraquat. The results show no significant changes in the chemical
structure of pineapple leaves after modification. The SMPLP exhibited higher
adsorption affinity towards paraquat herbicide. The adsorption experiments of
paraquat were carried out in a batch mode at room temperature. The effect of
paraquat concentrations (2–20 mg/mL) on the adsorption capacity of PLP and
SMPLP were investigated. The suitability of adsorbent was tested by fitting the
adsorption data into Langmuir and Freundlich isotherm equilibrium models. The
experimental adsorption data well fitted to Freundlich isotherm with multilayer
adsorption capacity of 13.0 mg/g. The highest adsorption of paraquat was
obtained by SMPLP treated with 2.5 mM CTAB while the lowest adsorption was obtained
by PLP. As a conclusion, the utilisation of surfactant-modified pineapple
leaves powder can become an alternative adsorbent for the removal of herbicide
compound in aqueous solution.
Keywords: paraquat, pineapple leaves, surfactant, adsorption
Abstrak
Herbisid parakuat
dikategorikan sebagai kemunculan bahan pencemar (CEC) yang boleh menyebabkan
masalah pada alam sekitar dan memberikan kesan toksik terhadap manusia dan
haiwan. Pada masa yang sama, pelupusan daun nanas melalui cara pembakaran boleh
menyebabkan masalah kepada alam sekitar seperti pencemaran udara. Oleh yang
demikian, dalam kajian ini serbuk daun nanas (PLP) telah digunakan sebagai
bahan penjerap kos rendah untuk menyingkirkan parakuat dalam larutan akueus.
Penjerapan parakuat dari larutan akueus oleh PLP dan PLP diubahsuai dengan
surfaktan (SMPLP) telah dikaji. SMPLP dihasilkan melalui tindak balas PLP pada
kepekatan surfaktan setiltrimetil ammonium bromida (CTAB) yang berbeza (0.5,
1.0, 2.5, dan 4.0 mM). PLP dan SMPLP telah dicirikan dengan menggunakan kaedah
spektroskopi inframerah transformasi Fourier (FTIR) selepas proses
pengubahsuaian dengan CTAB dan selepas proses penjerapan dengan parakuat.
Keputusan FTIR menunjukkan tiada perubahan ketara pada struktur kimia daun
nanas selepas pengubahsuaian. SMPLP menunjukkan keupayaan penjerapan yang
tinggi terhadap herbisid parakuat yang bercas positif. Proses penjerapan secara
berkelompok telah dijalankan pada suhu bilik. Kesan terhadap keupayaan
penjerapan PLP dan SMPLP pada kepekatan larutan parakuat (2–20 mg/mL) telah
dikaji. Kesesuaian bahan penjerap yang digunakan telah diuji dengan menggunakan
model Langmuir dan Freundlich. Data eksperimen berpadanan dengan model
Freundlich dengan penjerapan berbilang lapis pada kapasiti 13.0 mg/g.
Penjerapan tertinggi parakuat ialah dengan menggunakan SMPLP yang diubahsuai
dengan 2.5 mM CTAB manakala PLP menunjukkan penjerapan yang terendah.
Kesimpulannya, aplikasi daun nanas yang diubahsuai dengan surfaktan boleh
dijadikan sebagai bahan penjerap alternatif untuk menyingkirkan herbisid dalam
larutan akueus.
Kata kunci: parakuat, daun nanas, surfaktan, penjerapan
References
1.
Gilden, R. C., Huffling, K. and Sattler, B. (2010). Pesticides and
health risks. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 39(1):
103-110.
2.
Posecion, N., Ostrea, E. and Bielawski, D. (2008). Quantitative
determination of paraquat in meconium by sodium borohydride-nickel chloride
chemical reduction and gas chromatography/mass spectrometry (GC/MS). Journal
of Chromatography B, 862 (1-2): 93-99.
3.
Huang, C. L., Lee, Y. C., Yang, Y. C., Kuo, T. Y. and Huang, N. K.
(2012). Minocycline prevents paraquat-induced cell death through attenuating
endoplasmic reticulum stress and mitochondrial dysfunction. Toxicology
Letters, 209(3): 203-210.
4.
Phuinthiang, P. and Kajitvichyanukul, P. (2019). Degradation of paraquat
from contaminated water using green TiO2 nanoparticles synthesized
from Coffea arabica L. in
photocatalytic process. Water Science and
Technology, 79(5): 905-910.
5.
Zbair, M., Anfar, Z., Ahsaine, H. A. and Khallok, H. (2019). Kinetics,
equilibrium, statistical surface modeling and cost analysis of paraquat removal
from aqueous solution using carbonated jujube seed. RSC Advances, 9(2): 1084-1094.
6.
Chowdhury, S., Chakraborty, S. and Saha, P. (2011). Biosorption of basic
green 4 from aqueous solution by Ananas
comosus (pineapple) leaf powder. Colloids and Surfaces B: Biointerfaces, 84(2):
520-527.
7.
Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. and Idris, A.
(2011). Cationic and anionic dye adsorption by agricultural solid wastes: A
comprehensive review. Desalination,
280 (1–3): 1-13.
8.
Kamaru, A. A., Sani, N. S. and Malek, N. A. N. N. (2016). Raw and
surfactant-modified pineapple leaf as adsorbent for removal of methylene blue
and methyl orange from aqueous solution. Desalination and Water Treatment, 57(40):
18836-18850.
9.
Malek, N. A. N. N., Yusof, M. H. and Kamaru, A. A. (2019). Simultaneous
action of surfactant modified sugarcane bagasse: adsorbent and antibacterial agent. Malaysian Journal of Fundamental and
Applied Sciences, 15(1): 32-37.
10.
Kassim, N. A., Mohamed, A. Z., Zainudin, E. S., Zakaria, S., Azman, S.
K. Z. and Abdullah, H. H. (2018). Isolation and characterization of macerated
cellulose from pineapple leaf. BioResources,
14(1): 1198-1209.
11.
Nayan, N., Sharif, N., Razak, S., Wan Abdul Rahman, W. and Abd Majid, R.
(2013). Effect of mercerization on the properties of paper produced from
Malaysian pineapple leaf fibers. International
Journal of Engineering and Technology, 13(4): 1-6.
12.
Samal, R. and Ray, M. (1997). Effect of chemical modifications on FTIR
spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). Journal of Applied Polymer Science,
64(11): 2119-2125.
13.
Banerjee, R., Chintagunta, A. D. and Ray, S. (2019). Laccase mediated
delignification of pineapple leaf waste: An ecofriendly sustainable attempt
towards valorization. BMC Chemistry,
13(1): 58-69.
14.
Maniruzzaman, M., Rahman, M. A., Gafur, M. A., Fabritius, H. and Raabe,
D. (2012). Modification of pineapple leaf fibers and graft copolymerization of
acrylonitrile onto modified fibers. Journal
of Composite Materials, 46(1): 79-90.
15.
Weng, C. H. and Wu, Y. C. (2012). Potential low-cost biosorbent for
copper removal: Pineapple leaf powder. Journal
of Environmental Engineering, 138(3): 286-292.
16.
Masel, R. I. (1996). Principles of adsorption and reaction on solid
surfaces. John Wiley & Sons, Illinois: pp. 239-245
17.
Jaroniec, M. (1975). Adsorption on heterogeneous surfaces: The
exponential equation for the overall adsorption isotherm. Surface Science, 50(2): 553-564.
18.
Mas, H. M. and Sathasivam, K. (2009). The removal of methyl red from
aqueous solutions using banana pseudostem fibers. American Journal of Applied Sciences, 6(9): 1690-1700
19.
Martins, D., Simões, M. and Melo, L. (2015). Adsorption of paraquat
dichloride to kaolin particles and to mixtures of kaolin and hematite particles
in aqueous suspensions. Journal of Water
Security, 1(1): 25-36.
20.
Han, R., Han, P., Cai, Z., Zhao, Z. and Tang, M. (2008). Kinetics and
isotherms of neutral red adsorption on peanut husk. Journal of Environmental Sciences, 20(9): 1035-1041.
21.
Janoš, P., Coskun, S., Pilařová, V. and Rejnek, J. (2009). Removal of
basic (methylene blue) and acid (egacid orange) dyes from waters by sorption on
chemically treated wood shavings. Bioresource
Technology, 100(3): 1450-1453.
22.
Paria, S. and Khilar, K. C. (2004). A review on experimental studies of
surfactant adsorption at the hydrophilic solid - water interface. Advances in Colloid and Interface Science,
110(3): 75–95.