Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 604 - 612

DOI: 10.17576/mjas-2019-2304-06

 

 

 

REMOVAL OF PARAQUAT HERBICIDE BY CETYLTRIMETHYL AMMONIUM BROMIDE MODIFIED PINEAPPLE LEAVES

 

(Penyingkiran Herbisid Parakuat oleh Daun Nanas yang Diubahsuai dengan Setiltrimetil Ammonium Bromida)

 

Nik Ahmad Nizam Nik Malek1,2*, Muhd Hafiz Jusoh2, Auni Afiqah Kamaru3

 

1Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-ISIR)

2Department of Biosciences, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM Sekudai, Johor, Malaysia

3Geomatika University College,

Prima Peninsula, Jalan Setiawangsa 11, Taman Setiawangsa, 54200 Kuala Lumpur, Malaysia

 

*Corresponding author:  niknizam@utm.my

 

 

Received: 19 August 2018; Accepted: 7 July 2019

 

 

Abstract

Paraquat herbicide is categorised under contaminants of emerging concern (CEC) that can cause serious environmental problem and toxic effects towards human and animals. Also, the decomposing of pineapple leaves by burning in the field could create environmental problems such as air pollution. Therefore, in the present study, the pineapple leaves powder (PLP) was utilised as a low-cost adsorbent to remove paraquat from aqueous solution. The adsorption of paraquat from aqueous solution by PLP and surfactant-modified PLP (SMPLP) was examined. A series of SMPLP was prepared by reacting PLP with different concentrations of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) (0.5, 1.0, 2.5, and 4.0 mM). The PLP and SMPLP were characterised using Fourier transform infrared (FTIR) spectroscopy after the modification process with CTAB and after adsorption with paraquat. The results show no significant changes in the chemical structure of pineapple leaves after modification. The SMPLP exhibited higher adsorption affinity towards paraquat herbicide. The adsorption experiments of paraquat were carried out in a batch mode at room temperature. The effect of paraquat concentrations (2–20 mg/mL) on the adsorption capacity of PLP and SMPLP were investigated. The suitability of adsorbent was tested by fitting the adsorption data into Langmuir and Freundlich isotherm equilibrium models. The experimental adsorption data well fitted to Freundlich isotherm with multilayer adsorption capacity of 13.0 mg/g. The highest adsorption of paraquat was obtained by SMPLP treated with 2.5 mM CTAB while the lowest adsorption was obtained by PLP. As a conclusion, the utilisation of surfactant-modified pineapple leaves powder can become an alternative adsorbent for the removal of herbicide compound in aqueous solution.

 

Keywords:  paraquat, pineapple leaves, surfactant, adsorption

 

Abstrak

Herbisid parakuat dikategorikan sebagai kemunculan bahan pencemar (CEC) yang boleh menyebabkan masalah pada alam sekitar dan memberikan kesan toksik terhadap manusia dan haiwan. Pada masa yang sama, pelupusan daun nanas melalui cara pembakaran boleh menyebabkan masalah kepada alam sekitar seperti pencemaran udara. Oleh yang demikian, dalam kajian ini serbuk daun nanas (PLP) telah digunakan sebagai bahan penjerap kos rendah untuk menyingkirkan parakuat dalam larutan akueus. Penjerapan parakuat dari larutan akueus oleh PLP dan PLP diubahsuai dengan surfaktan (SMPLP) telah dikaji. SMPLP dihasilkan melalui tindak balas PLP pada kepekatan surfaktan setiltrimetil ammonium bromida (CTAB) yang berbeza (0.5, 1.0, 2.5, dan 4.0 mM). PLP dan SMPLP telah dicirikan dengan menggunakan kaedah spektroskopi inframerah transformasi Fourier (FTIR) selepas proses pengubahsuaian dengan CTAB dan selepas proses penjerapan dengan parakuat. Keputusan FTIR menunjukkan tiada perubahan ketara pada struktur kimia daun nanas selepas pengubahsuaian. SMPLP menunjukkan keupayaan penjerapan yang tinggi terhadap herbisid parakuat yang bercas positif. Proses penjerapan secara berkelompok telah dijalankan pada suhu bilik. Kesan terhadap keupayaan penjerapan PLP dan SMPLP pada kepekatan larutan parakuat (2–20 mg/mL) telah dikaji. Kesesuaian bahan penjerap yang digunakan telah diuji dengan menggunakan model Langmuir dan Freundlich. Data eksperimen berpadanan dengan model Freundlich dengan penjerapan berbilang lapis pada kapasiti 13.0 mg/g. Penjerapan tertinggi parakuat ialah dengan menggunakan SMPLP yang diubahsuai dengan 2.5 mM CTAB manakala PLP menunjukkan penjerapan yang terendah. Kesimpulannya, aplikasi daun nanas yang diubahsuai dengan surfaktan boleh dijadikan sebagai bahan penjerap alternatif untuk menyingkirkan herbisid dalam larutan akueus.

 

Kata kunci:  parakuat, daun nanas, surfaktan, penjerapan

 

References

1.       Gilden, R. C., Huffling, K. and Sattler, B. (2010). Pesticides and health risks. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 39(1): 103-110.

2.       Posecion, N., Ostrea, E. and Bielawski, D. (2008). Quantitative determination of paraquat in meconium by sodium borohydride-nickel chloride chemical reduction and gas chromatography/mass spectrometry (GC/MS). Journal of Chromatography B, 862 (1-2): 93-99.

3.       Huang, C. L., Lee, Y. C., Yang, Y. C., Kuo, T. Y. and Huang, N. K. (2012). Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicology Letters, 209(3): 203-210.

4.       Phuinthiang, P. and Kajitvichyanukul, P. (2019). Degradation of paraquat from contaminated water using green TiO2 nanoparticles synthesized from Coffea arabica L. in photocatalytic process. Water Science and Technology, 79(5): 905-910.

5.       Zbair, M., Anfar, Z., Ahsaine, H. A. and Khallok, H. (2019). Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Advances, 9(2): 1084-1094.

6.       Chowdhury, S., Chakraborty, S. and Saha, P. (2011). Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surfaces B: Biointerfaces, 84(2): 520-527.

7.       Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. and Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280 (1–3): 1-13.

8.       Kamaru, A. A., Sani, N. S. and Malek, N. A. N. N. (2016). Raw and surfactant-modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalination and Water Treatment, 57(40): 18836-18850.

9.       Malek, N. A. N. N., Yusof, M. H. and Kamaru, A. A. (2019). Simultaneous action of surfactant modified sugarcane bagasse: adsorbent and antibacterial agent. Malaysian Journal of Fundamental and Applied Sciences, 15(1): 32-37.

10.    Kassim, N. A., Mohamed, A. Z., Zainudin, E. S., Zakaria, S., Azman, S. K. Z. and Abdullah, H. H. (2018). Isolation and characterization of macerated cellulose from pineapple leaf. BioResources, 14(1): 1198-1209.

11.    Nayan, N., Sharif, N., Razak, S., Wan Abdul Rahman, W. and Abd Majid, R. (2013). Effect of mercerization on the properties of paper produced from Malaysian pineapple leaf fibers. International Journal of Engineering and Technology, 13(4): 1-6.

12.    Samal, R. and Ray, M. (1997). Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). Journal of Applied Polymer Science, 64(11): 2119-2125.

13.    Banerjee, R., Chintagunta, A. D. and Ray, S. (2019). Laccase mediated delignification of pineapple leaf waste: An ecofriendly sustainable attempt towards valorization. BMC Chemistry, 13(1): 58-69.

14.    Maniruzzaman, M., Rahman, M. A., Gafur, M. A., Fabritius, H. and Raabe, D. (2012). Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials, 46(1): 79-90.

15.    Weng, C. H. and Wu, Y. C. (2012). Potential low-cost biosorbent for copper removal: Pineapple leaf powder. Journal of Environmental Engineering, 138(3): 286-292.

16.    Masel, R. I. (1996). Principles of adsorption and reaction on solid surfaces. John Wiley & Sons, Illinois: pp. 239-245

17.    Jaroniec, M. (1975). Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm. Surface Science, 50(2): 553-564.

18.    Mas, H. M. and Sathasivam, K. (2009). The removal of methyl red from aqueous solutions using banana pseudostem fibers. American Journal of Applied Sciences, 6(9): 1690-1700

19.    Martins, D., Simões, M. and Melo, L. (2015). Adsorption of paraquat dichloride to kaolin particles and to mixtures of kaolin and hematite particles in aqueous suspensions. Journal of Water Security, 1(1): 25-36.

20.    Han, R., Han, P., Cai, Z., Zhao, Z. and Tang, M. (2008). Kinetics and isotherms of neutral red adsorption on peanut husk. Journal of Environmental Sciences, 20(9): 1035-1041.

21.    Janoš, P., Coskun, S., Pilařová, V. and Rejnek, J. (2009). Removal of basic (methylene blue) and acid (egacid orange) dyes from waters by sorption on chemically treated wood shavings. Bioresource Technology, 100(3): 1450-1453.

22.    Paria, S. and Khilar, K. C. (2004). A review on experimental studies of surfactant adsorption at the hydrophilic solid - water interface. Advances in Colloid and Interface Science, 110(3): 75–95.

 

 




Previous                    Content                    Next