Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 613 - 624

DOI: 10.17576/mjas-2019-2304-07

 

 

 

 

INTERACTION STUDIES OF PUTATIVE CHEMICAL LIGANDS IN BINDING SITES OF THERMOSTABLE LIPASE FROM Geobacillus zalihae STRAIN T1

 

(Kajian Interaksi Ligan Kimia pada Tapak Pengikatan Lipase Termostabil daripada Geobacillus zalihae Stren T1)

 

Mohd Basyaruddin Abdul Rahman1,2* and Muhammad Alif Mohammad Latif 1,2,3

 

1Integrated Chemical BioPhysics Research

2Department of Chemistry, Faculty of Science

3Centre of Foundation Studies for Agricultural Science

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author:  basya@upm.edu.my

 

 

Received: 19 August 2018; Accepted: 3 July 2019

 

 

Abstract

Industrial biotechnology focusing on the usage of enzyme as the catalyst in many chemical reactions, however enzyme stability remains a major challenge. Enzyme can be modified via genetic or chemical methods by manipulating its structure. A potential biocatalyst based on lipase enzyme was designed by in silico approach. The enzyme-ligand interactions between selected chemical ligands and a thermostable lipase from Geobacillus zalihae strain T1 were studied by using molecular docking, AutoDock 3.0.5. The T1 lipase structure (PDB ID: 2DSN) was predicted to have 65 pockets in the structure, with nine of them have the potential binding sites for ligands based on their surface area, volume and number of residues. The characteristics of each selected binding site and chemical ligands were analyzed. Types of enzyme-ligand interactions involved in binding sites were determined and co-related with the final docked energies. All these discoveries may prove useful for designing novel binding sites, in particular as new biocatalyst.

 

Keywords:  thermostable lipase, binding site, protein-ligand interaction, docking, biocatalyst

 

Abstrak

Industri bioteknologi memberi tumpuan kepada penggunaan enzim sebagai pemangkin dalam banyak tindak balas kimia, namun mengekalkan kestabilan enzim menjadi cabaran utama. Enzim boleh diubah melalui kaedah genetik atau kimia dengan memanipulasi struktur asasnya. Biokatalis yang berpotensi berdasarkan enzim lipase direka bentuk dengan menggunakan pendekatan berkomputer. Interaksi enzim-ligand antara ligan kimia dipilih dan lipase termostabil dari Geobacillus zalihae stren T1 telah dikaji dengan menggunakan pendokkan molekul, AutoDock 3.0.5. Struktur lipase T1 (PDB ID: 2DSN) diramalkan mempunyai 65 poket dalam struktur, dengan sembilan daripadanya mempunyai tapak pengikat yang berpotensi untuk ligan berdasarkan luas permukaan, jumlah dan bilangan residu. Ciri-ciri setiap tapak pengikat dan ligan kimia tersebut dipilih untuk dianalisis. Jenis-jenis interaksi enzim-ligan yang terlibat dalam tapak pengikat telah ditentukan dan berkait dengan tenaga berlabuh yang paling akhir. Semua penemuan ini terbukti bermanfaat bagi membentuk tapak mengikat novel, khususnya sebagai biokatalis yang baru.

 

Kata kunci:  lipase termostabil, tapak pengikat, interaksi protein-ligan, pendokkan, biokatalis

 

References

 1.       Choudhury, P. and Bhunia, B. (2015). Industrial application of lipase: A review. Biopharm Journal. (2): 41-47.

 2.       Aliyu, S. and Md. Zahangir, A. (2015). Thermostable lipases: An overview of production, purification and characterization. Biosciences Biotechnology Research Asia, 11(3):1095-1107.

 3.       Abedi Karjiban, R., Abdul Rahman, M. B., Basri, M., Salleh, A. B., Jacobs, D. and Abdul Wahab, H. (2009). Molecular dynamics study of the structure, flexibility and dynamics of thermostable L1 lipase at high temperatures. Protein Journal, 28(1): 14-23.

 4.       Leow, T. C., Abdul Rahman, R. N. Z., Basri, M. and Salleh, A. B. (2004). High level expression of thermostable lipase from Geobacillus sp. strain T1. Bioscience. Biotechnology and Biochemistry. 68: 96-103.

 5.       Bertoldo, J. B., Razzera, G., Vernal, J., Brod, F. C., Arisi, A. C. and Terenzi, H. (2011). Structural stability of Staphylococcus xylosus lipase is modulated by Zn(II) ions. Biochimica et Biophysica Acta 1814, 9:1120-1126.

 6.       Jaeger, K. E., Dijkstra, B. W. and Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology. 53: 315-351.

 7.       Timucin, E. and Sezerman, O. U. (2015). Zinc modulates self-assembly of Bacillus thermocatenulatus lipase. Biochemistry. 2015, 54(25): 3901-3910.

 8.       Tyndall, J. D. A., Sinchaikul, S., Forthergill-Gilmore, L. A., Taylor, P. and Walkinshaw, M. D. (2002) Crystal structure of a thermostable lipase from bacillus stearothermophilus P1. Journal of Molecular Biology, 323: 859-869.

 9.       Choi, W. C., Kim, M. H., Ro, H. S., Ryu, S. R., Oh. T. K. and Lee, J. K. (2005). Zinc in lipase L1 from Geobacillus stearothermophillus L1 and structural implications on thermal stability. FEBS Letters, 579 (16): 3461-3466.

10.     Timucin, E., Cousido-Siah, A., Mitschler, A., Podjarny, A. and Sezerman, O. U. (2016). Probing the roles of two tryptophans surrounding the unique zinc coordination site in lipase family I.5. Proteins: Structure Function and Bioinformatics, 84(1): 129-142.

11.     Abdul Rahman, M. Z., Salleh, A. B., Abdul Rahman, R. N. Z., Abdul Rahman, M. B., Basri, M. and Thean Chor, A. L. (2012). Unlocking the mystery behind the activation phenomenon of T1 lipase: A molecular dynamics simulations approach. Protein Science 21(8): 1210-1221.

12.     Medina-Franco, J., Mendez-Lucio, O. and Martinez-Mayorga, K. (2014). Chapter one – the interplay between molecular modeling and cheminformatics to characterize protein-ligand and protein-protein interactions landscapes for drug discovery interactions.  Advances in Protein Chemistry and Structural Biology, 96: 1-37.

13.     Abdul Rahman, M. B., Misran, A., Basri, M., Abdul Rahman, R. N. Z., Salleh, A. B. and Abdul Wahab, H. (2005). Screening and docking chemical ligands onto pocket cavities of a protease for designing a biocatalyst. Biocatalysis and Biotransformation, 23: 211-216.

14.     Chikhi, A. and Benseguemi, A. (2010). In silico study of the selective inhibition of bacteria peptide deformylases by several drugs. Journal of Proteomics and Bioinformatics 3: 061-065.

15.     Gao, J., Liang, L., Zhu, Y., Qiu, S., Wang, T. and Zhang, L. (2016). Ligand and structural-based approaches  for the identification of peptide deformylase inhibitors as antibacterial drugs. International Journal of Molecular Science, 17: 1141.

16.     Binkowski, T. A., Freeman, P. and Liang, J. (2004). pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Research, 32: W555-W558.

17.     Binkowski, T. A., Adamian, L. and Liang, J. (2003).  Inferring functional relationships of proteins from local sequence and spatial surface patterns. Journal of Molecular Biology. 332: 505-526.

18.     Kumar, S. and Nussinov, R. (2002). Close-range electrostatic interactions in proteins. ChemBioChem. 23(7): 604-617.

19.     Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 18: 1639-1662.

20.     Abdul Rahman, M. B., Karjiban, R. A., Salleh, A. B., Jacobs, D., Basri, M., Thean Chor, A. L., Abdul Wahab, H. and Abdul Rahman, R. N. Z. (2009). Deciphering the flexibility and dynamics of Geobacillus zalihae strain T1 lipase. Protein and Peptide Letters, 16(11):1460-1370.

21.     Pace, C. N., Shirley, B. A., McNutt, M. and Gajiwala, K. (1996). Forces contributing to the conformational   stability of proteins. The FASEB Journal, 10: 75-83.

22.     Rose, G. D., Fleming, P. J., Banavar, J. R. and Maritan, A. (2006). A backbone-based theory of protein folding. Proceedings of the National Academy of Sciences U.S.A, 103(45): 16623-16633.

23.     Sugimura, Y., Fukunaga, K., Matsuno, T., Nakao, K., Goto, M. and Nakashio, F. (2000). A study on the surface hydrophobicity of lipases. Biochemical Engineering Journal, 5: 123-128.

24.     Abdul Rahman, M. B., Jaafar, A. H., Basri, M., Abdul Rahman, R. N. Z. and Salleh, A. B. (2014). Biomolecular design and receptor-ligand interaction of a potential industrial biocatalsyt: A thermostable thermolysin-phosphoethanolamine-Ca2+ protein complex. Journal of Advanced Catalysis Science and Technology, 2014: 1-5.

25.     Panagiotis, L. K. and Alexandre M. J. J. B. (2013). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of The Royal Society Interface,10: 20120835.

 




Previous                    Content                    Next