Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 613 - 624
DOI:
10.17576/mjas-2019-2304-07
INTERACTION
STUDIES OF PUTATIVE CHEMICAL LIGANDS IN BINDING SITES OF THERMOSTABLE LIPASE
FROM Geobacillus zalihae STRAIN T1
(Kajian Interaksi Ligan Kimia pada Tapak Pengikatan Lipase
Termostabil daripada Geobacillus zalihae
Stren T1)
Mohd Basyaruddin Abdul Rahman1,2*
and Muhammad Alif Mohammad Latif 1,2,3
1Integrated Chemical BioPhysics Research
2Department of Chemistry, Faculty of Science
3Centre of Foundation Studies for Agricultural Science
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding
author: basya@upm.edu.my
Received: 19 August 2018; Accepted: 3 July 2019
Abstract
Industrial biotechnology focusing on the usage
of enzyme as the catalyst in many chemical reactions, however enzyme stability
remains a major challenge. Enzyme can be modified via genetic or chemical methods by manipulating its structure. A
potential biocatalyst based on lipase enzyme was designed by in silico approach. The enzyme-ligand
interactions between selected chemical ligands and a thermostable lipase from Geobacillus zalihae strain T1 were studied by using molecular docking, AutoDock
3.0.5. The T1 lipase structure (PDB ID: 2DSN) was predicted to have 65 pockets
in the structure, with nine of them have the potential binding sites for
ligands based on their surface area, volume and number of residues. The
characteristics of each selected binding site and chemical ligands were
analyzed. Types of enzyme-ligand interactions involved in binding sites were
determined and co-related with the final docked energies. All these discoveries
may prove useful for designing novel binding sites, in particular as new
biocatalyst.
Keywords: thermostable lipase, binding
site, protein-ligand interaction, docking, biocatalyst
Abstrak
Industri bioteknologi
memberi tumpuan kepada penggunaan enzim sebagai pemangkin dalam banyak tindak
balas kimia, namun mengekalkan kestabilan enzim menjadi cabaran utama. Enzim
boleh diubah melalui kaedah genetik atau kimia dengan memanipulasi struktur asasnya.
Biokatalis yang berpotensi berdasarkan enzim lipase direka bentuk dengan
menggunakan pendekatan berkomputer. Interaksi enzim-ligand antara ligan kimia
dipilih dan lipase termostabil dari Geobacillus
zalihae stren T1 telah dikaji dengan menggunakan pendokkan molekul,
AutoDock 3.0.5. Struktur lipase T1 (PDB ID: 2DSN) diramalkan mempunyai 65 poket
dalam struktur, dengan sembilan daripadanya mempunyai tapak pengikat yang
berpotensi untuk ligan berdasarkan luas permukaan, jumlah dan bilangan residu.
Ciri-ciri setiap tapak pengikat dan ligan kimia tersebut dipilih untuk
dianalisis. Jenis-jenis interaksi enzim-ligan yang terlibat dalam tapak
pengikat telah ditentukan dan berkait dengan tenaga berlabuh yang paling akhir.
Semua penemuan ini terbukti bermanfaat bagi membentuk tapak mengikat novel,
khususnya sebagai biokatalis yang baru.
Kata kunci: lipase termostabil, tapak pengikat, interaksi
protein-ligan, pendokkan, biokatalis
References
2.
Aliyu,
S. and Md. Zahangir, A. (2015). Thermostable lipases: An overview of
production, purification and characterization. Biosciences Biotechnology Research Asia, 11(3):1095-1107.
3.
Abedi
Karjiban, R., Abdul Rahman, M. B., Basri, M., Salleh, A. B., Jacobs, D. and Abdul
Wahab, H. (2009). Molecular dynamics study of the structure, flexibility and
dynamics of thermostable L1 lipase at high temperatures. Protein Journal, 28(1): 14-23.
4.
Leow,
T. C., Abdul Rahman, R. N. Z., Basri, M. and Salleh, A. B. (2004). High level
expression of thermostable lipase from Geobacillus
sp. strain T1. Bioscience. Biotechnology and Biochemistry.
68: 96-103.
5.
Bertoldo,
J. B., Razzera, G., Vernal, J., Brod, F. C., Arisi, A. C. and Terenzi, H.
(2011). Structural stability of Staphylococcus
xylosus lipase is modulated by Zn(II) ions. Biochimica
et Biophysica Acta 1814, 9:1120-1126.
6.
Jaeger,
K. E., Dijkstra, B. W. and Reetz, M. T. (1999). Bacterial biocatalysts:
molecular biology, three-dimensional structures, and biotechnological
applications of lipases. Annual Review of
Microbiology. 53: 315-351.
7.
Timucin,
E. and Sezerman, O. U. (2015). Zinc modulates self-assembly of Bacillus thermocatenulatus lipase. Biochemistry. 2015, 54(25): 3901-3910.
8.
Tyndall,
J. D. A., Sinchaikul, S., Forthergill-Gilmore, L. A., Taylor, P. and
Walkinshaw, M. D. (2002) Crystal structure of a thermostable lipase from bacillus stearothermophilus P1. Journal
of Molecular Biology, 323: 859-869.
9.
Choi,
W. C., Kim, M. H., Ro, H. S., Ryu, S. R., Oh. T. K. and Lee, J. K. (2005). Zinc
in lipase L1 from Geobacillus stearothermophillus
L1 and structural implications on thermal stability. FEBS Letters, 579 (16): 3461-3466.
10.
Timucin,
E., Cousido-Siah, A., Mitschler, A., Podjarny, A. and Sezerman, O. U. (2016).
Probing the roles of two tryptophans surrounding the unique zinc coordination
site in lipase family I.5. Proteins:
Structure Function and Bioinformatics, 84(1): 129-142.
11.
Abdul
Rahman, M. Z., Salleh, A. B., Abdul Rahman, R. N. Z., Abdul Rahman, M. B.,
Basri, M. and Thean Chor, A. L. (2012). Unlocking the mystery behind the
activation phenomenon of T1 lipase: A molecular dynamics simulations approach. Protein Science 21(8): 1210-1221.
12.
Medina-Franco, J.,
Mendez-Lucio, O. and Martinez-Mayorga, K. (2014). Chapter one – the interplay
between molecular modeling and cheminformatics to characterize protein-ligand
and protein-protein interactions landscapes for drug discovery
interactions. Advances in Protein Chemistry and Structural Biology, 96: 1-37.
13.
Abdul
Rahman, M. B., Misran, A., Basri, M., Abdul Rahman, R. N. Z., Salleh, A. B. and
Abdul Wahab, H. (2005). Screening and docking chemical ligands onto pocket
cavities of a protease for designing a biocatalyst. Biocatalysis and Biotransformation, 23: 211-216.
14.
Chikhi, A. and
Benseguemi, A. (2010). In silico
study of the selective inhibition of bacteria peptide deformylases by several
drugs. Journal of Proteomics and
Bioinformatics 3: 061-065.
15.
Gao, J., Liang, L.,
Zhu, Y., Qiu, S., Wang, T. and Zhang, L. (2016). Ligand and structural-based
approaches for the identification of
peptide deformylase inhibitors as antibacterial drugs. International Journal of Molecular Science, 17: 1141.
16.
Binkowski, T. A.,
Freeman, P. and Liang, J. (2004). pvSOAR:
detecting similar surface patterns of pocket and void surfaces of amino acid
residues on proteins. Nucleic Acids
Research, 32: W555-W558.
17.
Binkowski,
T. A., Adamian, L. and Liang, J. (2003).
Inferring functional relationships of
proteins from local sequence and spatial surface patterns. Journal
of Molecular Biology. 332: 505-526.
18.
Kumar,
S. and Nussinov, R. (2002). Close-range electrostatic interactions in proteins.
ChemBioChem. 23(7): 604-617.
19.
Morris,
G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K.
and Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm
and an empirical binding free energy function. Journal of Computational
Chemistry, 18: 1639-1662.
20. Abdul Rahman, M.
B., Karjiban, R.
A., Salleh, A. B., Jacobs, D., Basri, M., Thean Chor, A. L., Abdul Wahab, H.
and Abdul Rahman, R. N. Z. (2009). Deciphering the
flexibility and dynamics of Geobacillus
zalihae strain T1 lipase. Protein and
Peptide Letters, 16(11):1460-1370.
21.
Pace,
C. N., Shirley, B. A., McNutt, M. and Gajiwala, K. (1996). Forces contributing to the conformational stability of proteins. The FASEB
Journal, 10: 75-83.
22.
Rose,
G. D., Fleming, P. J., Banavar, J. R. and Maritan, A. (2006). A backbone-based
theory of protein folding. Proceedings of
the National Academy of Sciences U.S.A, 103(45): 16623-16633.
23.
Sugimura,
Y., Fukunaga, K., Matsuno, T., Nakao, K., Goto, M. and Nakashio, F. (2000). A
study on the surface hydrophobicity of lipases. Biochemical
Engineering Journal, 5: 123-128.
24. Abdul Rahman, M. B., Jaafar, A. H., Basri, M., Abdul
Rahman, R. N. Z. and Salleh, A. B. (2014). Biomolecular design and
receptor-ligand interaction of a potential industrial biocatalsyt: A
thermostable thermolysin-phosphoethanolamine-Ca2+ protein complex. Journal of Advanced Catalysis Science and
Technology, 2014: 1-5.
25. Panagiotis, L. K. and Alexandre M. J. J. B. (2013). On
the binding affinity of macromolecular interactions: daring to ask why proteins
interact. Journal of The Royal Society
Interface,10: 20120835.