Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 625 - 636
DOI:
10.17576/mjas-2019-2304-08
ADSORPTION
OF MALACHITE GREEN ONTO MODIFIED CHITOSAN–SULFURIC ACID BEADS: A PRELIMINARY
STUDY
(Penjerapan Malakit Hijau ke atas Manik Kitosan-Asid
Sulfurik Terubahsuai: Satu Kajian Awal)
Suhaila Mohd Yusoff1,
Wan Saime Wan Ngah1, Faizatul Shimal Mehamod2, Faiz
Bukhari Mohd Suah1*
1School of Chemical Sciences,
Universiti
Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
2School of Fundamental Science,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: fsuah@usm.my
Received: 2 July 2018; Accepted: 9 July 2019
Abstract
The removal of malachite green (MG) from
aqueous solutions by cross–linked chitosan–sulfuric acid (H2SO4)
beads was investigated. Solubility and swelling tests were performed in order
to determine the stability of the chitosan–H2SO4 beads in
acidic solution, basic solution and distilled water. Different parameters
affecting the adsorption capacity such as initial pH (pH 2-12), agitation
period (10-60 minutes) and initial concentrations of MG (5-30 mg/L) were
studied. In addition, the adsorption capacities of MG onto chitosan–H2SO4
beads were determined too. In order to describe adsorption isotherm of
chitosan–H2SO4 beads, the sorption data were analyzed
using linear form of Langmuir and Freundlich equation. It was found that
Langmuir isotherm showed higher conformity than Freundlich isotherm
(30.96>2.23). A kinetic study indicated that pseudo–second–order kinetic
equation correlates well with the experimental data. FT–IR analysis established
there was an interaction between MG and chitosan–H2SO4
beads. It can be concluded that chitosan–H2SO4 beads were
favorable absorbers and could be used as alternate adsorbents for removal of MG
in water treatment process.
Keywords: adsorption, chitosan–H2SO4
beads, isotherm, kinetics, malachite green
Abstrak
Penyingkiran malakit hijau
(MG) daripada larutan akueus oleh manik kitosan-asid sulfurik (H2SO4)
berangkai-silang telah dikaji. Ujian keterlarutan dan pengembangan dijalankan
untuk menentukan kestabilan manik kitosan-H2SO4 di dalam
larutan asid, larutan alkali dan air suling. Parameter berbeza yang
mempengaruhi muatan penjerapan seperti pH awal (pH 2-12), tempoh putaran (10-60
minit) dan kepekatan awal MG (5-30 mg/L) dikaji. Sebagai tambahan, muatan
penjerapan bagi MG terhadap kitosan-H2SO4 turut
ditentukan. Bagi menentukan isoterma penjerapan manik kitosan-H2SO4,
data penjerapan telah dianalisis menggunakan persamaan linear Langmuir dan
Freundlich. Didapati isoterma Langmuir lebih sesuai berbanding isoterma
Freundlich (30.96>2.23). Kajian kinetik menunjukkan persamaan
tertib-pseudo-kedua berhubung baik dengan data kajian. Analisis FT-IR
mengesahkan terdapat interaksi diantara MG dan manik kitosan-H2SO4.
Dapat disimpulkan bahawa kitosan-H2SO4 adalah penjerap
pilihan dan boleh digunakan sebagai penjerap alternatif bagi menyingkirkan MG
dalam proses perawatan air.
Kata kunci: penjerapan, manik kitosan-H2SO4,
isoterma, kinetik, malakit hijau
References
1.
Zhou,
Y., Lu, J., Zhou, Y. and Liu, Y. (2019). Recent advances for dyes removal using
novel adsorbents: A review. Environmental
Pollution, 252: 352-365.
2.
Bekci,
Z., Ozveri, C., Seki, Y. and Yurdakoc, K. (2008). Sorption of MG on chitosan
beads. Journal of Hazardous Materials,
154: 254-261.
3.
Yeoh,
Y. L. and Mohd Suah, F. B. (2017). Extraction of
malachite green from wastewater by using polymer inclusion membrane. Journal of Environmental Chemical
Engineering, 5: 785-794.
4.
Ngah,
W. S. W., Fathinathan, F. and Yosop, N. A. (2011). Isotherm and kinetic studies
on the adsorption of humic acid onto chitosan–H2SO4
beads. Desalination, 272: 293-300.
5.
Ngah,
W. S. W., Teong, L. C. and Hanafiah, M. A. K. M. (2011). Adsorption of dyes and
heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83: 1446-1456.
6.
Ngah,
W. S. W. and Isa, I. M. (1998). Comparison study of copper ion adsorption on
chitosan Dowex A–1 and zeolite. Journal
of Applied Polymer Science, 67: 1067-1070.
7.
Muzzarelli,
C., Stanic, V., Gobbi, L., Tossi, G. and Muzzarelli, R. A. A. (2004).
Spray–drying of solutions containing chitosan together with polyuronans and
characterization of the microspheres. Carbohydrate
Polymers, 57: 73-82.
8.
Chang,
M. Y. and Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes
from water using the composite of chitosan and activated clay. Journal of Colloid Interface Science,
278: 18-25.
9.
Boddu,
V. M., Abburi, K., Talbott, J. L. and Smith, E. D. (2003). Removal of
hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science Technology. 37:
4449-4456.
10.
Ngah,
W. S. W., Endud, C. S. and Mayanar, R. (2002). Removal of copper (II) ions from
aqueous solution onto chitosan and cross–linked chitosan beads. Reactive and Functional Polymers, 50:
181-190.
11.
Lee,
S. T., Mi, F. L., Shen, Y. J. and Shyu, S. S. (2001). Equilibrium and kinetic
studies of copper (II) ion uptake by chitosan–tripolyphosphate chelating resin.
Polymer, 42: 1879-1892.
12.
Hameed,
B. H. and El–Khaiary, M. I. (2008). Batch removal of malachite green from
aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms
and kinetic studies. Journal of Hazardous
Materials, 154: 237-244.
13.
El–Ashtoukhy,
E. S. Z., Amin, N. K. and Abdelwahab, O. (2008). Removal of lead (II) and
copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 223: 162-173.
14.
Naseeruteen,
F., Abdul Hamid, N. S. Mohd Suah, F. B., Wan Ngah, W. S. and Mehamod, F. S.
(2018). Adsorption of malachite green from aqueous solution by using novel
chitosan ionic liquid beads. International
Journal of Biological Macromolecules, 107: 1270-1277.
15.
Abou-Gamra,
Z. M. and Ahmed, M. A. (2015). TiO2 nanoparticles for removal of
malachite green dye from waste water. Advances
in Chemical Engineering and Science, 5: 373-388.
16.
Wang,
W. J., Cui, Q. Y., Qin, T. and Sun, H. H. (2018). Preparation of Fe3O4@SiO2@
chitosan for the adsorption of malachite green. IOP Conf. Series: Earth and Environmental Science, 186: 012014.
17.
Zhang,
Y., Wan, H., Zhao, J. and Li, J. (2019). Biosorption of anionic and cationic
dyes via raw and chitosan oligosaccharide-modified Huai Flos Chrysanthemum at
different temperature. RSC Advances, 9: 11202-11211.
18.
Arumugam,
T. K., Krishnamoorty, P., Rajagopalan, N. R., Nanthini, S. and Vasudevan, D.
(2019). Removal of malachite green from aqueous solutions using a modified
chitosan composite. International Journal
of Biological Macromolecules, 128: 655-664.
19.
Ngah,
W. S. W., Ariff, N. F. M., Hashim, A. and Hanafiah, M. A. K. M. (2010).
Malachite green adsorption onto chitosan coated bentonite beads: Isotherms,
kinetics and mechanism. Clean–Soil Air
Water, 38: 394-400.
20.
Li,
X. X., li, J., Cai, L. Y., Li, T. T., Liu, X. F. and Li, J. R. (2016).
Malachite green adsorption behavior of polyurethane/ chitosan foam. Cellular Polymers, 35: 1-17.
21.
Gimbert,
F., Morin–Crini, N., Renault, F., Badot, P. M. and Crini, G. (2008). Adsorption
isotherm models for dye removal by cationized starch–based material in a single
component system: Error analysis. Journal
of Hazardous Materials, 157: 34-46.
22.
Ho,
Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions
onto sphagnum moss peat. Water Research,
34: 735-742.
23.
Ho,
Y. S. and McKay, G. (1998). A comparison of chemisorption kinetic models
applied to pollutant removal on various sorbents. Process Safety and Environment Protection, 76: 332-340.
24.
Xu,
X., Bai, B., Wang, H. and Suo, Y. (2017). Synthesis of human hair
fiber-impregnated chitosan beads functionalized with citric acid for the
adsorption of lysozyme. RSC Advances,
7: 6636-6647.
25.
Pal,
P. and Pal, A. (2017). Surfactant-modified chitosan beads for cadmium ion adsorption. International Journal of Biological
Macromolecules, 104: 1548-1555.