Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 625 - 636

DOI: 10.17576/mjas-2019-2304-08

 

 

 

ADSORPTION OF MALACHITE GREEN ONTO MODIFIED CHITOSAN–SULFURIC ACID BEADS: A PRELIMINARY STUDY

 

(Penjerapan Malakit Hijau ke atas Manik Kitosan-Asid Sulfurik Terubahsuai: Satu Kajian Awal)

 

Suhaila Mohd Yusoff1, Wan Saime Wan Ngah1, Faizatul Shimal Mehamod2, Faiz Bukhari Mohd Suah1*

 

1School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

2School of Fundamental Science,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: fsuah@usm.my

 

 

Received: 2 July 2018; Accepted: 9 July 2019

 

 

Abstract

The removal of malachite green (MG) from aqueous solutions by cross–linked chitosan–sulfuric acid (H2SO4) beads was investigated. Solubility and swelling tests were performed in order to determine the stability of the chitosan–H2SO4 beads in acidic solution, basic solution and distilled water. Different parameters affecting the adsorption capacity such as initial pH (pH 2-12), agitation period (10-60 minutes) and initial concentrations of MG (5-30 mg/L) were studied. In addition, the adsorption capacities of MG onto chitosan–H2SO4 beads were determined too. In order to describe adsorption isotherm of chitosan–H2SO4 beads, the sorption data were analyzed using linear form of Langmuir and Freundlich equation. It was found that Langmuir isotherm showed higher conformity than Freundlich isotherm (30.96>2.23). A kinetic study indicated that pseudo–second–order kinetic equation correlates well with the experimental data. FT–IR analysis established there was an interaction between MG and chitosan–H2SO4 beads. It can be concluded that chitosan–H2SO4 beads were favorable absorbers and could be used as alternate adsorbents for removal of MG in water treatment process.

 

Keywords:  adsorption, chitosan–H2SO4 beads, isotherm, kinetics, malachite green

 

Abstrak

Penyingkiran malakit hijau (MG) daripada larutan akueus oleh manik kitosan-asid sulfurik (H2SO4) berangkai-silang telah dikaji. Ujian keterlarutan dan pengembangan dijalankan untuk menentukan kestabilan manik kitosan-H2SO4 di dalam larutan asid, larutan alkali dan air suling. Parameter berbeza yang mempengaruhi muatan penjerapan seperti pH awal (pH 2-12), tempoh putaran (10-60 minit) dan kepekatan awal MG (5-30 mg/L) dikaji. Sebagai tambahan, muatan penjerapan bagi MG terhadap kitosan-H2SO4 turut ditentukan. Bagi menentukan isoterma penjerapan manik kitosan-H2SO4, data penjerapan telah dianalisis menggunakan persamaan linear Langmuir dan Freundlich. Didapati isoterma Langmuir lebih sesuai berbanding isoterma Freundlich (30.96>2.23). Kajian kinetik menunjukkan persamaan tertib-pseudo-kedua berhubung baik dengan data kajian. Analisis FT-IR mengesahkan terdapat interaksi diantara MG dan manik kitosan-H2SO4. Dapat disimpulkan bahawa kitosan-H2SO4 adalah penjerap pilihan dan boleh digunakan sebagai penjerap alternatif bagi menyingkirkan MG dalam proses perawatan air.

 

Kata kunci:  penjerapan, manik kitosan-H2SO4, isoterma, kinetik, malakit hijau

 

References

1.       Zhou, Y., Lu, J., Zhou, Y. and Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252: 352-365.

2.       Bekci, Z., Ozveri, C., Seki, Y. and Yurdakoc, K. (2008). Sorption of MG on chitosan beads. Journal of Hazardous Materials, 154: 254-261.

3.       Yeoh, Y. L. and Mohd Suah, F. B. (2017). Extraction of malachite green from wastewater by using polymer inclusion membrane. Journal of Environmental Chemical Engineering, 5: 785-794.

4.       Ngah, W. S. W., Fathinathan, F. and Yosop, N. A. (2011). Isotherm and kinetic studies on the adsorption of humic acid onto chitosan–H2SO4 beads. Desalination, 272: 293-300.

5.       Ngah, W. S. W., Teong, L. C. and Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83: 1446-1456.

6.       Ngah, W. S. W. and Isa, I. M. (1998). Comparison study of copper ion adsorption on chitosan Dowex A–1 and zeolite. Journal of Applied Polymer Science, 67: 1067-1070.

7.       Muzzarelli, C., Stanic, V., Gobbi, L., Tossi, G. and Muzzarelli, R. A. A. (2004). Spray–drying of solutions containing chitosan together with polyuronans and characterization of the microspheres. Carbohydrate Polymers, 57: 73-82.

8.       Chang, M. Y. and Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid Interface Science, 278: 18-25.

9.       Boddu, V. M., Abburi, K., Talbott, J. L. and Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science Technology. 37: 4449-4456.

10.    Ngah, W. S. W., Endud, C. S. and Mayanar, R. (2002). Removal of copper (II) ions from aqueous solution onto chitosan and cross–linked chitosan beads. Reactive and Functional Polymers, 50: 181-190.

11.    Lee, S. T., Mi, F. L., Shen, Y. J. and Shyu, S. S. (2001). Equilibrium and kinetic studies of copper (II) ion uptake by chitosan–tripolyphosphate chelating resin. Polymer, 42: 1879-1892.

12.    Hameed, B. H. and El–Khaiary, M. I. (2008). Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. Journal of Hazardous Materials, 154: 237-244.

13.    El–Ashtoukhy, E. S. Z., Amin, N. K. and Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 223: 162-173.

14.    Naseeruteen, F., Abdul Hamid, N. S. Mohd Suah, F. B., Wan Ngah, W. S. and Mehamod, F. S. (2018). Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. International Journal of Biological Macromolecules, 107: 1270-1277.

15.    Abou-Gamra, Z. M. and Ahmed, M. A. (2015). TiO2 nanoparticles for removal of malachite green dye from waste water. Advances in Chemical Engineering and Science, 5: 373-388.

16.    Wang, W. J., Cui, Q. Y., Qin, T. and Sun, H. H. (2018). Preparation of Fe3O4@SiO2@ chitosan for the adsorption of malachite green. IOP Conf. Series: Earth and Environmental Science, 186: 012014.

17.    Zhang, Y., Wan, H., Zhao, J. and Li, J. (2019). Biosorption of anionic and cationic dyes via raw and chitosan oligosaccharide-modified Huai Flos Chrysanthemum at different temperature. RSC Advances, 9: 11202-11211.

18.    Arumugam, T. K., Krishnamoorty, P., Rajagopalan, N. R., Nanthini, S. and Vasudevan, D. (2019). Removal of malachite green from aqueous solutions using a modified chitosan composite. International Journal of Biological Macromolecules, 128: 655-664.

19.    Ngah, W. S. W., Ariff, N. F. M., Hashim, A. and Hanafiah, M. A. K. M. (2010). Malachite green adsorption onto chitosan coated bentonite beads: Isotherms, kinetics and mechanism. Clean–Soil Air Water, 38: 394-400.

20.    Li, X. X., li, J., Cai, L. Y., Li, T. T., Liu, X. F. and Li, J. R. (2016). Malachite green adsorption behavior of polyurethane/ chitosan foam. Cellular Polymers, 35: 1-17.

21.    Gimbert, F., Morin–Crini, N., Renault, F., Badot, P. M. and Crini, G. (2008). Adsorption isotherm models for dye removal by cationized starch–based material in a single component system: Error analysis. Journal of Hazardous Materials, 157: 34-46.

22.    Ho, Y. S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34: 735-742.

23.    Ho, Y. S. and McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environment Protection, 76: 332-340.

24.    Xu, X., Bai, B., Wang, H. and Suo, Y. (2017). Synthesis of human hair fiber-impregnated chitosan beads functionalized with citric acid for the adsorption of lysozyme. RSC Advances, 7: 6636-6647.

25.    Pal, P. and Pal, A. (2017). Surfactant-modified chitosan beads for cadmium ion adsorption. International Journal of Biological Macromolecules, 104: 1548-1555.

 

 




Previous                    Content                    Next