Sains Malaysiana 48(8)(2019):
1655–1660
http://dx.doi.org/10.17576/jsm-2019-4808-11
Determination of Heavy
Metals and Radionuclides in Coal and Industrial Fly Ash by Neutron Activation
Analysis (NAA) and Gamma Spectrometry
(Pengenalpastian Logam
Berat dan Radionuklid pada Arang dan Abu Terbang Industri melalui Analisis
Pengaktifan Neutron (NAA) dan
Spektroskopi Gamma)
WADEEAH M. AL-AREQI1, AIMAN. M. BOBAKER2*, INTISAR ALAKILI2, AMRAN AB. MAJID3 & SUKIMAN SARMANI4
1Radiation Exposure and
Laboratory General Directorate, National Atomic Energy Commission (NATEC),
Sana’a, Yemen
2Chemistry Department, Faculty
of Science, University of Benghazi, Benghazi, Libya
3Nuclear Science
Programme, School of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4University of Kuala
Lumpur, Jalan Sultan Ismail, 50540 Kuala Lumpur, Federal Territory, Malaysia
Received:
24 February 2019/Accepted: 24 May 2019
ABSTRACT
Coal-fired power plants
and industrial waste (IW) incinerators increasingly dispose
large amounts of fly ash that cause environmental contamination by toxic heavy
metals. This study aimed to investigate the concentration of heavy metals and
measure the specific activity of naturally occurring radioactive materials (NORM)
that remain in the fly ash of coal power plants and industrial incinerators.
Ash samples were collected from the Kapar and Jana Manjung coal-fired power
plants and the Kualiti Alam industrial incinerator in Malaysia. The
concentrations of As, Ba, Co, Cr, Fe, Sb, Zn, Th and U were determined via
neutron activation analysis (NAA). Results indicated that
the highest concentrations of heavy metals in Kapar and Jana Manjung coal fly
ash were 27 012 and 57 500 mg/kg for Fe and 494 and 1,119 mg/kg for Ba,
respectively, and the lowest concentrations for Sb were at 3.67 and 2.23 mg/kg,
respectively. The concentrations of Fe, Zn, Ba and Cr in industrial fly ash
were 31 0007, 7 675, 2 760 and 1,029 mg/kg, respectively. The concentrations of
As, Ba, Cr, Fe and Zn were higher in industrial fly ash than in coal fly ash.
The specific activity concentrations of NORM, namely, 40K, 226Ra, 232Th
and 238U determined by gamma spectrometry in Kapar coal fly
ash were 321.65, 27.42, 134.41 and 152.71 Bq/kg, respectively. Elemental
concentration results indicated that the amounts of heavy metals depended on
feed sources and combustion temperatures. Most heavy metal contents and
radionuclides in power plant and incinerator fly ash were significantly lower
or within the global ranges.
Keywords: Fly ash;
heavy metals; naturally occurring radioactive materials (NORM);
Neutron Activation Analysis (NAA)
ABSTRAK
Loji janakuasa
berasaskan arang batu dan insinerator sisa industri (IW) berterusan
melepaskan sejumlah besar abu cerobong yang menyebabkan pencemaran alam sekitar
disebabkan kandungan logam berat bertoksik. Kajian ini bertujuan untuk mengkaji
kepekatan logam berat dan mengukur aktiviti khusus bahan radioaktif terjadi
secara alami (NORM) yang masih bersisa di dalam abu cerobong dari loji
janakuasa arang batu dan insinerator industri. Sampel abu telah diambil dari
loji janakuasa arang batu Kapar dan Jana Manjung dan insinerator industri
Kualiti Alam di Malaysia. Kepekatan As, Ba, Co, Cr, Fe, Sb, Zn, Th dan U
ditentukan melalui analisis pengaktifan neutron (NAA).
Keputusan menunjukkan bahawa kepekatan tertinggi logam berat dalam sisa abu
cerobong di Kapar dan Jana Manjung adalah 27,012 dan 57,500 mg/kg untuk Fe dan
494 dan 1 119 mg/kg untuk Ba, dan kepekatan terendah bagi Sb adalah 3.67 dan
2.23 mg/kg. Kepekatan Fe, Zn, Ba dan Cr dalam industri abu cerobong adalah
31,0007, 7,675, 2,760 dan 1,029 mg/kg. Kepekatan As, Ba, Cr, Fe dan Zn adalah
lebih tinggi dalam abu cerobong industri daripada abu cerobong arang batu.
Kepekatan aktiviti khusus daripada NORM, iaitu 40K, 226Ra, 232Th
dan 238U ditentukan oleh spektroskopi gama di abu cerobong
arang batu Kapar masing-masing adalah 321.65, 27.42, 134.41 dan 152.71 Bq/kg.
Kepekatan unsur menunjukkan bahawa jumlah logam berat bergantung kepada sumber
bekalan dan suhu pembakaran. Kebanyakan kandungan logam berat dan radionuklid
di loji janakuasa dan insinerator abu cerobong adalah lebih rendah dengan
ketara atau dalam julat global.
Kata kunci: Abu
cerobong; analisis pengaktifan neutron (NAA); bahan
radioaktif terjadi secara alami (NORM); logam
berat
REFERENCES
Ahmaruzzaman,
M. 2010. A review on the utilization of fly ash. Progress in Energy and
Combustion Science 36(3): 327-363.
Al-Areqi,
W.M., Amran, Ab Majid. & Sukiman, Sarmani. 2008. Analysis of trace elements
in power plant and industrial incinerator fly ashes by Instrumental Neutron
Activation Analysis (INAA). Malaysian Journal of Analytical Sciences 12(2):
375-379.
Bode,
P., Hoffman, E.L., Lindstrom, R.L., Parry, S.J. & Rosenberg, R.J. 1990.
Practical aspects of operating a neutron activation analysis laboratory. IAEA
Techdoc. 564: 1-251.
Chang,
F.Y. & Wey, M.Y. 2006. Comparison of the characteristics of bottom and fly
ashes generated from various incineration processes. Journal of Hazardous
Materials 138(3): 594-603.
Chen,
J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C. & Wu, D. 2014. Coal
utilization in China: Environmental impacts and human health. Environmental
Geochemistry and Health 36(4): 735-753.
Dai,
S., Yan, X., Ward, C.R., Hower, J.C., Zhao, L., Wang, X., Zhao, L., Ren, D.
& Finkelman, R.B. 2018. Valuable elements in Chinese coals: A review. International
Geology Review 60(5-6): 590-620.
Dogan,
O. & Kobya, M. 2006. Elemental analysis of trace elements in fly ash sample
of Yatağan thermal power plants using EDXRF. Journal of Quantitative
Spectroscopy and Radiative Transfer 101(1): 146-150.
Duong,
P.V., Thanh, V.T., Dien, P.Q. & Thanh Binh, N. 1995. Application of Nuclear
Activation Analysis (NAA) and low-level gamma counting to determine the
radionuclide and trace element-pollutant releases from coal-fired power plants
in Vietnam. Science of the Total Environment 173: 339-344.
Dwivedi,
S., Srivastava, S., Mishra, S., Dixit, B., Kumar, A. & Tripathi, R.D. 2008.
Screening of native plants and algae growing on fly-ash affected areas near
National Thermal Power Corporation, Tanda, Uttar Pradesh, India for
accumulation of toxic heavy metals. Journal of Hazardous Materials 158(2-3):
359-365.
Erol,
M., Küçükbayrak, S. & Ersoy-Meriçboyu, A. 2007. Characterization of coal
fly ash for possible utilization in glass production. Fuel 86(5-6):
706-714.
Fardy,
J., McOrist, G. & Farrar, Y. 1989. Neutron activation analysis and
radioactivity measurements of Australian coals and fly ashes. Journal of
Radioanalytical and Nuclear Chemistry 133(2): 217-226.
Ferré-Huguet,
N., Nadal, M., Mari, M., Schuhmacher, M., Borrajo, M.A. & Domingo, J.L.
2007. Monitoring metals near a hazardous waste incinerator. Temporal trend in
soils and herbage. Bulletin of Environmental Contamination and Toxicology 79(2):
130-134.
Flues,
M., Camargo, I.M.C., Silva, P.S.C. & Mazzilli, B.P. 2006. Radioactivity of
coal and ashes from Figueira Coal Power Plant in Brazil. Journal of
Radioanalytical and Nuclear Chemistry 270(3): 597-602.
Goodarzi,
F. 2006. Characteristics and composition of fly ash from Canadian
coal-fired power plants. Fuel 85(10-11): 1418-1427.
Jegadeesan,
G., Al-Abed, S.R. & Pinto, P. 2008. Influence of trace metal distribution
on its leachability from coal fly ash. Fuel 87(10-11): 1887-1893.
Kida,
A., Noma, Y. & Imada, T. 1996. Chemical speciation and leaching
properties of elements in municipal incinerator ashes. Waste
Management 16(5-6): 527-536.
Landsberger,
S., Buchholz, B.A., Kaminski, M. & Plewa, M. 1993. Trace elements in
municipal solid waste incinerator fly ash. Journal of Radioanalytical and
Nuclear Chemistry 167(2): 331-340.
Malik,
M., Soni, N.K., Kanagasabapathy, K.V., Prasad, M.V.R. & Satpathy,
K.K. 2016. Characterisation of fly ash from coal-fired thermal power
plants using energy dispersive x-ray fluorescence spectrometry.
Sci. Rev. Chem. Commun. 6(4): 91-101.
Marrero,
J., Polla, G., Rebagliati, R.J., Gómez, R.P. & Smichowski, P. 2007.
Characterization and determination of 28 elements in fly ashes collected in a
thermal power plant in Argentina using different instrumental techniques. Spectrochimica
Acta Part B: Atomic Spectroscopy 62(2): 101-108.
Meij,
R. & Winkel, H.t. 2007. The emissions of heavy metals and persistent
organic pollutants from modern coal-fired power stations. Atmospheric
Environment 41(40): 9262-9272.
Mohd
Annas, B.M.N.M.A. & Mohd Nor, M.A. 2005. Future coal utilization in
Malaysia. In APEC Clean Fossil Energy Technical and Policy Seminar, Cebu
City Marriott Hotel, The Philippines. pp. 26-29.
Nawaz,
I. 2013. Disposal and utilization of fly ash to protect the environment. International
Journal of Innovative Research in Science, Engineering and Technology 2(10):
5259-5266.
Orvini,
E. & Pirico, R. 1995. Mass balance evaluation in power plants using Neutron
Activation Analysis (NAA). Microchemical Journal 51(1-2): 159-165.
Papaefthymiou, H.,
Symeopoulos, B.D. & Soupioni, M. 2007. Neutron activation analysis and
natural radioactivity measurements of lignite and ashes from Megalopolis Basin,
Greece. Journal of Radioanalytical and Nuclear Chemistry 274(1):
123-130.
Papastefanou, C. 2007.
Radioactivity of coals and fly ashes. Journal of Radioanalytical and Nuclear
Chemistry 275(1): 29-35.
Querol, X.,
Fernández-Turiel, J. & López-Soler, A. 1995. Trace elements in coal and
their behaviour during combustion in a large power station. Fuel 74(3):
331-343.
Reijnders, L. 2005.
Disposal, uses and treatments of combustion ashes: A review. Resources,
Conservation and Recycling 43(3): 313-336.
Sijakova-Ivanova, T.,
Panov, Z., Blažev, K. & Zajkova-Paneva, V. 2011. Investigation of fly ash
heavy metals content and physico chemical properties from thermal power plant,
Republic of Macedonia. International Journal of Engineering Science and
Technology (IJEST) 3(12): 8219-8225.
Singh, M.K., Kumar, S.
& Ratha, D. 2016. Physiochemical and leaching characteristics of fly and
bottom ash. Energy Sources, Part A: Recovery, Utilization, and Environmental
Effects 38(16): 2377-2382.
Singh, R., Singh, R.K.,
Gupta, N.C. & Guha, B.K. 2010. Assessment of heavy metals in fly ash and
groundwater-A case study of NTPC Badarpur Thermal Power Plant, Delhi, India. Pollution
Research 29(4): 685-689.
Sushil, S. & Batra,
V.S. 2006. Analysis of fly ash heavy metal content and disposal in three
thermal power plants in India. Fuel 85(17-18): 2676-2679.
Vance, D.E. &
Ehmann, W.D. 1991. Radiochemistry and Nuclear Methods of Analysis. New
York: Wiley.
*Corresponding
author; email: aiman.bobaker@uob.edu.ly
|