Sains Malaysiana 48(8)(2019): 1661–1670

http://dx.doi.org/10.17576/jsm-2019-4808-12

 

Preparation and Characterization of Hybrid Molecularly Imprinted Polymer Membranes for the Determination of Citrinin in Rice

(Penyediaan dan Pencirian Membran Hibrid Polimer Molekul Teraan untuk Penentuan Sitrinin pada Beras)

 

TIEN PING LEE1*, BAHRUDDIN SAAD2, LISA NAKAJIMA3 & TAKAOMI KOBAYASHI3

 

1RCSI & UCD Malaysia Campus, 4 Jalan Sepoy Lines, 10450 Pulau Pinang, Malaysia

 

2Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

3Department of Material Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan

 

Received: 10 August 2018/Accepted: 7 May 2019

 

ABSTRACT

A new method for the determination of Citrinin (CIT) in rice samples by hybrid molecularly imprinted polymer (MIP) membrane prior to its quantification by high performance liquid chromatography with fluorescence detection (HPLC-FD) is described for the first time. Conventional extraction methods, such as liquid-liquid extraction (LLE) and solid phase extraction (SPE) produce large volumes of environmentally hazardous waste and the common sorbents used in SPE often suffered from low selectivity. Hybrid MIP membranes offer the advantage of combining the mechanical integrity of the support membrane and the selectivity of the imprinted polymer. These membranes offer large specific surfaces, providing relatively high imprinting sites per unit mass, and fine porous structures, resulting in accessibility of imprinting sites. Thus, MIPs for CIT with 1-naphthol as mimic template were prepared using divinylbenzene as crosslinker and naphthol methacrylate was hybridized into the polyethersulfone scaffold by phase inversion process. The prepared hybrid MIP membrane was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Using the resultant hybrid MIP membranes as sample preparation for HPLC-FD of CIT, detection and quantification limits of 0.5 ng g-1 and 1.7 ng g-1, respectively, were obtained. The intra-day and inter-day precision expressed in %RSD ranged from 1.9-2.9% and 2.6-5.9%, respectively. The recoveries of CIT in rice spiked at 5, 25 and 100 ng g-1 ranged from 89.7-94.2%. Thus, the hybrid MIP membranes can be valuable material for the practical determination of CIT in rice extracts.

 

Keywords: Citrinin; high performance liquid chromatography; hybrid molecularly imprinted membrane; rice

 

ABSTRAK

Kaedah baru untuk penentuan sitrinin (CIT) dalam sampel beras oleh membran hibrid polimer molekul teraan sebelum kuantifikasi oleh kromatografi cecair prestasi tinggi dengan pengesanan pendarfluor dijelaskan buat kali pertama. Kaedah pengekstrakan konvensional, seperti pengekstrakan cecair-cecair (LLE) dan pengekstrakan fasa pepejal (SPE) menghasilkan sejumlah besar sisa berbahaya alam sekitar dengan penjerab biasa yang digunakan dalam SPE sering mengalami kepilihan yang rendah. Membran MIP hibrid menawarkan kelebihan menggabungkan integriti mekanikal membran sokongan dan pemilihan polimer teraan. Membran ini mempunyai permukaan khusus yang besar, menyediakan tapak teraan yang agak tinggi bagi setiap jisim unit dan struktur berliang yang halus, menyebabkan akses tapak teraan. Polimer molekul teraan (MIP) untuk CIT telah disediakan dengan 1-naftol (NA) sebagai templat tiruan. Seterusnya, membran hibrid polimer molekul teraan telah disediakan dengan memerangkap zarah MIP ke dalam perancah polietersulfon dengan menggunakan teknik fasa penyongsangan. Membran tersebut telah dicirikan dengan menggunakan transformasi Fourier spektroskopi inframerah (FTIR) dan mikroskopi pengimbasan elektron (SEM). Dengan menggunakan hibrid membran sebagai penyediaan sampel bagi analisis HPLC-FD untuk CIT, had pengesanan dan penentuan 0.5 ng g-1 dan 1.7 ng g-1 telah tercapai. Ketepatan intra-hari dan antara hari yang dinyatakan dalam % RSD masing-masing adalah antara 1.9-2.9% dan 2.6-5.9%. Perolehan semula CIT yang dipaku ke dalam beras pada 5, 25 dan 100 ng g-1 adalah 89.7-94.2%. Oleh itu, membran hibrid MIP adalah bahan bernilai bagi penentuan praktikal CIT dalam ekstrak beras.

 

Kata kunci: Beras; kromatografi cecair prestasi tinggi; membran hibrid polimer molekul teraan; sitrinin

REFERENCES

Ali, N., Blaszkewicz, M., Alim, A., Hossain, K. & Degen, G.H. 2016. Urinary biomarkers of ochratoxin A and citrinin exposure in two Bangladeshi cohorts: Follow-up study on regional and seasonal influences. Arch. Toxicol. 90(11): 2683-2697.

Appell, M., Jackson, M.A., Wang, L.C. & Bosma, W.B. 2015. Determination of citrinin using molecularly imprinted solid phase extraction purification, HPLC separation, and fluorescence detection. J. Liq. Chromatogr. Relat. Technol. 38(20): 1815-1819.

Commission Regulation (EU). No 212/2014 of 6 March 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of the contaminant citrinin in food supplements based on rice fermented with red yeast Monascus purpureus. Off. J. Eur. Union L67: 3-4.

Čulig, B., Bevardi, M., Bošnir, J., Serdar, S., Lasić, D., Racz, A., Galić, A. & Kuharić, Ž. 2017. Presence of citrinin in grains and its possible health effects. Afr. J. Tradit. Complement. Altern. Med. 14(3): 22-30.

Faizal, C.K.M., Hoshina, Y. & Kobayashi, T. 2008. Scaffold membranes for selective adsorption of α-tocopherol by phase inversion covalently imprinting technique. J. Membrane Sci. 322(2): 503-511.

Faizal, C.K.M., Kikuchi, Y. & Kobayashi, T. 2009. Molecular imprinting targeted for α-tocopherol by calix[4]resorcarenes derivative in membrane scaffold prepared by phase inversion. J. Membrane Sci. 334(1): 110-116.

Föllmann, W., Behm, C. & Degen, G.H. 2014. Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Arch. Toxicol. 88(5): 1097-1107.

Guo, B.Y., Wang, S., Ren, B., Li, X., Qin, F. & Li, J. 2010. Citrinin selective molecularly imprinted polymers for SPE. J. Sep. Sci. 33(8): 1156-1160.

Hartl, A. & Stenzel, W.R. 2007. Development of a method for the determination of citrinin in barley, rye and wheat by solid phase extraction on aminopropyl columns and HPLC-FLD. Mycotoxin Research 23(3): 127-131.

Kiebooms, J.A.L., Huybrechts, B., Thiry, C., Tangni, E.K. & Callebaut, A. 2016. A quantitative UHPLC-MS/MS method for citrinin and ochratoxin A detection in food, feed and red yeast rice food supplem. World Mycotoxin J. 9(3): 343-352.

Marley, E., Brown, P., Leeman, D. & Donnelly, C. 2016. Analysis of citrinin in cereals, red yeast rice dietary supplement, and animal feed by immunoaffinity column cleanup and lc with fluorescence detection. J. AOAC Int. 99(4): 1025-1031.

Martín-Esteban, A. & Sellergren, B. 2012. Molecularly imprinted polymers. In. Comprehensive Sampling and Sample Preparation, edited by Pawliszyn, J. Oxford: Academic Press. pp. 331-344.

Pleadin, J., Frece, J., Kudumija, N., Petrović, D., Vasilj, V., Zadravec, M., Škrivanko, M., Perković, I. & Markov, K. 2016. Citrinin in cereals and feedstuffs coming from Croatia and Bosnia & Herzegovina. Food Addit. & Contaminants: Part B Surveill. 9(4): 268-274.

Son, L.T. & Takaomi, K. 2011. Hollow-fiber membrane absorbents embedded molecularly imprinted polymeric spheres for bisphenol A target. J. Membrane Sci. 384(1-2): 117-125.

Sarafraz-Yazdi, A. & Razavi, N. 2015. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC - Trends in Analytical Chemistry 73: 81-90.

Takeda, K. & Kobayashi, T. 2006. Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J. Membrane Sci. 275(1-2): 61-69.

Tamayo, F.G., Turiel, E. & Martín-Esteban, A. 2007. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A 1152(1): 32-40.

Urraca, J.L., Huertas-Pérez, J.F., Cazorla, G.A., Gracia-Mora, J., García-Campaña, A.M. & Moreno-Bondi, M.C. 2016. Development of magnetic molecularly imprinted polymers for selective extraction: Determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal. Bioanal. Chem. 408(11): 3033-3042.

Yoshikawa, M., Tharpa, K. & Dima, S.O. 2016. Molecularly imprinted membranes: Past, present, and future. Chemical Reviews 116(19): 11500-11528.

Vasapollo, G., Sole, R.D., Mergola, L., Lazzoi, M.R., Scardino, A., Scorrano, S. & Mele, G. 2011. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 12(9): 5908-5945.

Xu, B.J., Jia, X.Q., Gu, L.J. & Sung, C.K. 2006. Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control 17(4): 271-285.

Yi, L.X., Fang, R. & Chen, G.H. 2013. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals. J. Chromatogr. Sci. 51(7): 608-618.

Yirga, S.K., Ling, S., Yang, Y., Yuan, J. & Wang, S. 2017. The preparation and identification of a monoclonal antibody against citrinin and the development of detection via indirect competitive ELISA. Toxins 9(3): 110.

 

*Corresponding author; email: leetienping@rsciucd.edu.my

 

 

previous