Sains Malaysiana 48(8)(2019): 1661–1670
http://dx.doi.org/10.17576/jsm-2019-4808-12
Preparation and
Characterization of Hybrid Molecularly Imprinted Polymer Membranes for the
Determination of Citrinin in Rice
(Penyediaan dan
Pencirian Membran Hibrid Polimer Molekul Teraan untuk Penentuan Sitrinin pada
Beras)
TIEN PING LEE1*, BAHRUDDIN SAAD2, LISA NAKAJIMA3 & TAKAOMI KOBAYASHI3
1RCSI & UCD Malaysia
Campus, 4 Jalan Sepoy Lines, 10450 Pulau Pinang, Malaysia
2Fundamental and Applied
Science Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak
Darul Ridzuan, Malaysia
3Department of Material
Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka,
Nagaoka, Niigata 940-2188, Japan
Received:
10 August 2018/Accepted: 7 May 2019
ABSTRACT
A new method for the
determination of Citrinin (CIT) in rice samples by hybrid
molecularly imprinted polymer (MIP) membrane prior to its
quantification by high performance liquid chromatography with fluorescence
detection (HPLC-FD) is described for the first time. Conventional
extraction methods, such as liquid-liquid extraction (LLE)
and solid phase extraction (SPE) produce large volumes of
environmentally hazardous waste and the common sorbents used in SPE often
suffered from low selectivity. Hybrid MIP membranes offer the
advantage of combining the mechanical integrity of the support membrane and the
selectivity of the imprinted polymer. These membranes offer large specific
surfaces, providing relatively high imprinting sites per unit mass, and fine
porous structures, resulting in accessibility of imprinting sites. Thus, MIPs
for CIT with 1-naphthol as mimic template were prepared using
divinylbenzene as crosslinker and naphthol methacrylate was hybridized into the
polyethersulfone scaffold by phase inversion process. The prepared hybrid MIP membrane
was characterized using Fourier transform infrared spectroscopy (FTIR)
and scanning electron microscopy (SEM). Using the resultant
hybrid MIP membranes as sample preparation for HPLC-FD of CIT,
detection and quantification limits of 0.5 ng g-1 and
1.7 ng g-1, respectively, were obtained. The intra-day and
inter-day precision expressed in %RSD ranged from 1.9-2.9% and
2.6-5.9%, respectively. The recoveries of CIT in
rice spiked at 5, 25 and 100 ng g-1 ranged from 89.7-94.2%.
Thus, the hybrid MIP membranes can be valuable material
for the practical determination of CIT in rice extracts.
Keywords: Citrinin;
high performance liquid chromatography; hybrid molecularly imprinted membrane;
rice
ABSTRAK
Kaedah baru untuk penentuan
sitrinin (CIT) dalam sampel beras oleh membran
hibrid polimer molekul teraan sebelum kuantifikasi oleh kromatografi
cecair prestasi tinggi dengan pengesanan pendarfluor dijelaskan
buat kali pertama. Kaedah pengekstrakan konvensional, seperti pengekstrakan
cecair-cecair (LLE)
dan pengekstrakan fasa pepejal (SPE) menghasilkan sejumlah besar
sisa berbahaya alam sekitar dengan penjerab biasa yang digunakan
dalam SPE
sering mengalami kepilihan yang rendah. Membran MIP hibrid menawarkan kelebihan
menggabungkan integriti mekanikal membran sokongan dan pemilihan
polimer teraan. Membran ini mempunyai permukaan khusus yang besar,
menyediakan tapak teraan yang agak tinggi bagi setiap jisim unit
dan struktur berliang yang halus, menyebabkan akses tapak teraan.
Polimer molekul teraan (MIP)
untuk CIT telah disediakan dengan 1-naftol (NA)
sebagai templat tiruan. Seterusnya, membran hibrid polimer molekul
teraan telah disediakan dengan memerangkap zarah MIP ke dalam perancah polietersulfon
dengan menggunakan teknik fasa penyongsangan. Membran tersebut telah
dicirikan dengan menggunakan transformasi Fourier spektroskopi inframerah
(FTIR)
dan mikroskopi pengimbasan elektron (SEM). Dengan menggunakan hibrid
membran sebagai penyediaan sampel bagi analisis HPLC-FD untuk
CIT,
had pengesanan dan penentuan 0.5 ng g-1 dan 1.7 ng g-1 telah
tercapai. Ketepatan intra-hari dan antara hari yang dinyatakan dalam
% RSD
masing-masing adalah antara 1.9-2.9% dan 2.6-5.9%.
Perolehan semula CIT yang
dipaku ke dalam beras pada 5, 25 dan 100 ng g-1 adalah
89.7-94.2%. Oleh itu, membran hibrid MIP adalah bahan bernilai bagi
penentuan praktikal CIT dalam ekstrak beras.
Kata kunci: Beras;
kromatografi cecair prestasi tinggi; membran hibrid polimer molekul teraan; sitrinin
REFERENCES
Ali, N., Blaszkewicz,
M., Alim, A., Hossain, K. & Degen, G.H. 2016. Urinary biomarkers of
ochratoxin A and citrinin exposure in two Bangladeshi cohorts: Follow-up study
on regional and seasonal influences. Arch. Toxicol. 90(11): 2683-2697.
Appell, M., Jackson,
M.A., Wang, L.C. & Bosma, W.B. 2015. Determination of citrinin using
molecularly imprinted solid phase extraction purification, HPLC separation, and
fluorescence detection. J. Liq. Chromatogr. Relat. Technol. 38(20):
1815-1819.
Commission Regulation
(EU). No 212/2014 of 6 March 2014 amending Regulation (EC) No 1881/2006 as
regards maximum levels of the contaminant citrinin in food supplements based on
rice fermented with red yeast Monascus purpureus. Off. J. Eur. Union L67:
3-4.
Čulig, B., Bevardi,
M., Bošnir, J., Serdar, S., Lasić, D., Racz, A., Galić, A. &
Kuharić, Ž. 2017. Presence of citrinin in grains and its possible health
effects. Afr. J. Tradit. Complement. Altern. Med. 14(3): 22-30.
Faizal, C.K.M., Hoshina,
Y. & Kobayashi, T. 2008. Scaffold membranes for selective adsorption of
α-tocopherol by phase inversion covalently imprinting technique. J.
Membrane Sci. 322(2): 503-511.
Faizal, C.K.M., Kikuchi,
Y. & Kobayashi, T. 2009. Molecular imprinting targeted for
α-tocopherol by calix[4]resorcarenes derivative
in membrane scaffold prepared by phase inversion. J. Membrane Sci. 334(1):
110-116.
Föllmann, W., Behm, C.
& Degen, G.H. 2014. Toxicity of the mycotoxin citrinin and its metabolite
dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro.
Arch. Toxicol. 88(5): 1097-1107.
Guo, B.Y., Wang, S.,
Ren, B., Li, X., Qin, F. & Li, J. 2010. Citrinin selective molecularly
imprinted polymers for SPE. J. Sep. Sci. 33(8): 1156-1160.
Hartl, A. & Stenzel,
W.R. 2007. Development of a method for the determination of citrinin in barley,
rye and wheat by solid phase extraction on aminopropyl columns and HPLC-FLD. Mycotoxin
Research 23(3): 127-131.
Kiebooms, J.A.L.,
Huybrechts, B., Thiry, C., Tangni, E.K. & Callebaut, A. 2016. A
quantitative UHPLC-MS/MS method for citrinin and ochratoxin A detection in
food, feed and red yeast rice food supplem. World Mycotoxin J. 9(3):
343-352.
Marley, E., Brown, P.,
Leeman, D. & Donnelly, C. 2016. Analysis of citrinin in cereals, red yeast
rice dietary supplement, and animal feed by immunoaffinity column cleanup and
lc with fluorescence detection. J. AOAC Int. 99(4): 1025-1031.
Martín-Esteban, A. &
Sellergren, B. 2012. Molecularly imprinted polymers. In. Comprehensive
Sampling and Sample Preparation, edited by Pawliszyn, J. Oxford: Academic
Press. pp. 331-344.
Pleadin, J., Frece, J.,
Kudumija, N., Petrović, D., Vasilj, V., Zadravec, M., Škrivanko, M.,
Perković, I. & Markov, K. 2016. Citrinin in cereals and feedstuffs coming
from Croatia and Bosnia & Herzegovina. Food Addit. & Contaminants:
Part B Surveill. 9(4): 268-274.
Son, L.T. & Takaomi,
K. 2011. Hollow-fiber membrane absorbents embedded molecularly imprinted
polymeric spheres for bisphenol A target. J. Membrane Sci. 384(1-2):
117-125.
Sarafraz-Yazdi, A. &
Razavi, N. 2015. Application of molecularly-imprinted polymers in solid-phase
microextraction techniques. TrAC - Trends in Analytical Chemistry 73:
81-90.
Takeda, K. &
Kobayashi, T. 2006. Hybrid molecularly imprinted membranes for targeted
bisphenol derivatives. J. Membrane Sci. 275(1-2): 61-69.
Tamayo, F.G., Turiel, E.
& Martín-Esteban, A. 2007. Molecularly imprinted polymers for solid-phase
extraction and solid-phase microextraction: Recent developments and future
trends. J. Chromatogr. A 1152(1): 32-40.
Urraca, J.L.,
Huertas-Pérez, J.F., Cazorla, G.A., Gracia-Mora, J., García-Campaña, A.M. &
Moreno-Bondi, M.C. 2016. Development of magnetic molecularly imprinted polymers
for selective extraction: Determination of citrinin in rice samples by liquid
chromatography with UV diode array detection. Anal. Bioanal. Chem. 408(11):
3033-3042.
Yoshikawa, M., Tharpa,
K. & Dima, S.O. 2016. Molecularly imprinted membranes: Past, present, and
future. Chemical Reviews 116(19): 11500-11528.
Vasapollo, G., Sole,
R.D., Mergola, L., Lazzoi, M.R., Scardino, A., Scorrano, S. & Mele, G.
2011. Molecularly imprinted polymers: Present and future prospective. Int. J.
Mol. Sci. 12(9): 5908-5945.
Xu, B.J., Jia, X.Q., Gu,
L.J. & Sung, C.K. 2006. Review on the qualitative and quantitative analysis
of the mycotoxin citrinin. Food Control 17(4): 271-285.
Yi, L.X., Fang, R. &
Chen, G.H. 2013. Molecularly imprinted solid-phase extraction in the analysis
of agrochemicals. J. Chromatogr. Sci. 51(7): 608-618.
Yirga, S.K., Ling, S.,
Yang, Y., Yuan, J. & Wang, S. 2017. The preparation and identification of a
monoclonal antibody against citrinin and the development of detection via indirect
competitive ELISA. Toxins 9(3): 110.
*Corresponding
author; email: leetienping@rsciucd.edu.my
|